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ABSTRACT

The sensitivity of various accuracy measures to displacement error, bias, and event frequency is analyzed
for a simple hypothetical forecasting situation. Each measure is found to be sensitive to displacement error
and bias, but probability of detection and threat score do not change as a function of event frequency. On
the other hand, equitable threat score, true skill statistic, and odds ratio skill score behaved differently with
changing event frequency. A newly devised measure, here called the bias-adjusted threat score, does not
change with varying event frequency and is relatively insensitive to bias. Numerous plots are presented to
allow users of these accuracy measures to make quantitative estimates of sensitivities that are relevant to
their particular application.

1. Introduction

Performance measures, such as threat score, are
widely used as summary measures of forecast quality.
There are a variety of measures from which to choose
depending on the type of forecast being issued, whether
continuous or categorical, probabilistic or determinis-
tic. For example, the Environmental Modeling Center
(EMC), a part of the National Centers for Environmen-
tal Prediction (NCEP), has primarily used equitable
threat and bias scores to quantify the performance of
precipitation forecasts from numerical guidance (e.g.,
Mesinger 1996; Rogers et al. 2001). Typical perfor-
mance measures provide information on a single aspect
of forecast quality, such as forecast accuracy. Accuracy
was defined by Murphy (1993) as the degree of corre-
spondence between the forecasts and observations. Ac-
curacy is one of the many aspects of forecast quality
that can be obtained from the joint distribution of fore-
casts and observations. Previous research (e.g., Murphy
and Winkler 1987; Murphy 1991; Brooks and Doswell
1996) emphasized the dangers of failing to perform a
complete analysis of the joint distribution in order to

properly diagnose the verification information. How-
ever, such a distributions-oriented approach is rarely
used in practice due to the complexity and high dimen-
sionality of the joint distribution of forecasts and ob-
servations, particularly when multiple forecasting sys-
tems are compared.

When selecting an accuracy measure, one must un-
derstand the sensitivity characteristics of the score. To
what types of errors is the score most sensitive? Does
the score encourage biased forecasts? Are false alarms
punished more (or less) than missed events? Does the
score behave differently for rare events than for more
common events? The validity of verification informa-
tion depends upon such characteristics. Sensitivities of
accuracy measures have been considered by several re-
searchers in the past. Mason (1989) examined the sen-
sitivity of the threat score (critical success index) to the
observed event frequency as well as the decision thresh-
old, which can be related to the bias. In the framework
of his analysis (probability of detection and probability
of false detection held constant), the threat score was
found to be highly sensitive to these factors. Specifi-
cally, commonly occurring events resulted in higher
threat scores than rare events, and the threat score was
maximized for bias values greater than one (overfore-
casting). Hamill (1999) discussed the implications of the
sensitivity to bias in determining confidence intervals
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for the threat score. Modifications to the threat score
have been proposed in order to reduce the sensitivity to
forecast bias (Schaefer 1990; Mesinger and Brill 2004).
These modifications were intended to make the threat
score more equitable (Gandin and Murphy 1992) so
that the modified forms do not reward over- or under-
forecasting of an event, implying that the score should
be maximized when the bias is equal to one. However,
Marzban (1998) analyzed over a dozen different per-
formance measures and showed that none of them were
equitable for rare events under realistic forecasting
conditions.

While equitable scores are desirable for some appli-
cations, they may be inappropriate measures of forecast
value (Murphy 1993), which depends on how forecasts
are used and how different outcomes affect the user of
the forecast information. Forecast value was defined by
Murphy (1993) as the benefits of forecast information
to a user of the forecast. Each user will have a different
level of sensitivity to false alarms and missed events,
depending on their individual situation. For certain
situations, a biased forecast may, in fact, be more valu-
able than an unbiased forecast. For example, users that
are especially sensitive to missed events will generally
find forecasts with a high bias more valuable than un-
biased forecasts. The opposite is true for users sensitive
to false alarm errors; forecasts with low bias generally
provide more value than unbiased forecasts. Thornes
and Stephenson (2001) provided an example of the
complicated relationship between forecast bias, accu-
racy, and value for a winter weather forecasting situa-
tion. The cost–loss situation for a city deciding whether
or not to treat slippery roads was analyzed for two com-
peting forecast providers. Thornes and Stephenson
(2001) found that a forecast provider with a bias of 1.8
resulted in greater economic value to the city than a
forecast with a bias of 1, even though various accuracy
measures showed the unbiased forecast to be preferred.

In the analysis of verification results, the issue of the
sensitivity of a particular score to bias is often raised.
When comparing competing forecast systems using any
of a number of accuracy measures, one is forced to
consider whether a higher score is the result of superior
performance, or perhaps a characteristic “prejudice” of
the accuracy measure in question. It may be impossible
to modify a system in order to produce unbiased fore-
casts, and arbitrary adjustments to the forecasts may be
difficult to justify. Information related to the degree of
bias sensitivity for a particular performance measure is
necessary for proper interpretation of verification in-
formation. Of course, bias is one of many aspects of
forecast quality (Murphy 1993) that should be consid-

ered when analyzing the performance of forecast sys-
tems.

More recently, several researchers have emphasized
the high degree of sensitivity of performance measures
to spatial scale as well as methods of representing ob-
servations and forecasts at identical locations (Tustison
et al. 2001; Gallus 2002; Mass et al. 2002; Accadia et al.
2003; Gong et al. 2003; Weygandt et al. 2004). These
factors are particularly important when comparing
forecasts that contain realistic detail (high resolution)
with those that are smooth/coarse (low resolution).

To provide more meaningful information, one may
desire to decompose forecast errors into separate inde-
pendent factors. For example, Murphy (1996) decom-
posed scores related to the mean square error into bias,
reliability, and resolution components. For spatial fore-
casts in particular, one could consider several compo-
nents of forecast error using a phenomenological or
object-oriented approach. Ebert and McBride (2000),
following the general idea of Hoffman et al. (1995),
designed a technique to decompose errors in forecasts
of specific precipitation events into components due to
displacement, amplitude, and shape errors. Nachamkin
(2004) used event compositing techniques in order to
analyze various spatial error characteristics, such as dis-
placement and amplitude errors, for particular meso-
scale phenomena.

In this paper, we address spatial forecast errors such
as those associated with quantitative precipitation fore-
casts. The sensitivity of several measures of accuracy to
event frequency, bias, and displacement errors will be
examined using a hypothetical forecasting situation that
can be systematically manipulated. The equitability of
each measure will also be examined for a variety of
forecasting conditions. The hypothetical forecasting
situation is described in section 2. The performance
measures are defined in section 3. Analysis of the re-
sults is found in section 4, followed by concluding re-
marks in section 5.

2. Hypothetical forecast situation

The spatial forecast situation, such as forecasting ac-
cumulated precipitation greater than a specific thresh-
old, will be modeled using a simple hypothetical ex-
ample. In Fig. 1, forecast and observed regions of a
specific event are represented by circular shapes. Since
this is a dichotomous (yes–no) forecast, it can be veri-
fied through the use of a 2 � 2 contingency table (Table
1). In this paper, we will examine the sensitivity of sev-
eral performance measures to variations in bias B and
displacement D errors. Therefore, the various elements
of the contingency table must be computed as a func-
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tion of B and D. Circular shapes are chosen to allow for
the simple calculation of the forecast and observed ar-
eas, in addition to the overlap area indicating the region
of correct forecasts (hits). To simplify the problem fur-
ther, the total area of the verification domain N � a �
b � c � d is set to 1. As a result, the elements of the
contingency table become fractional areas relative to
the entire verification domain. While the shape of the
overall verification domain is arbitrary, it is convenient
to consider a square domain consisting of sides of unit
length. In this case, the displacement error and circle

radii can be considered fractions of the length scale of
the verification domain. The lengths of the observed
circle ro and forecast circle rf radii are allowed to vary.
The centers of the two circles are separated by D. The
radius of the observed circle determines the fraction
of the verification domain in which the specified event
is observed. In this study, this fractional area also rep-
resents the event frequency P. The square of the ratio
of the forecast radius to the observed radius deter-
mines B. To allow for comparison of results with dif-
ferent observed event frequencies, the displacement er-
rors will be normalized relative to the radius of the
observed circle, that is, the normalized displacement
error D� � D/ro.

Given the areas of the forecast and observed regions,
the area of their intersection, and the area of the veri-
fication domain, each element of the contingency table
can be computed analytically. The area of a lens created
by two intersecting circles (Weisstein 2005) represents
the area of correct forecasts, denoted by a:

FIG. 1. Hypothetical examples of spatial forecasts and associated observed regions. The radius of each observed
circle is ro, the radius of each forecast circle is rf, and the distance between the centers of the observed and forecast
circles is denoted by D. The total verification domain N is indicated by the dashed outer square, the area of which
is held fixed at N � 1. The area of correct “yes” forecasts is denoted by a. The region of correct “no” forecasts is
d. The region that is forecast but not observed (false alarm) is denoted by b. The area that is observed but not
forecast (missed event) is indicated by c. (a) A situation with partial overlap between the forecast and observed
circles, with a bias indicated by B. (b) A scenario with no overlap. (c) A situation where the forecast completely
envelopes the observed area, with no missed events. (d) A scenario where the forecast is entirely within the
observed area, with no false alarms.

TABLE 1. Contingency table for a given event.

Observed

Yes No Total

Forecast Yes a b a � b
No c d c � d
Tot a � c b � d 1
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a � ro
2 cos�1�D2 � ro

2 � rf
2

2Dro
�� rf

2 cos�1�D2 � rf
2 � ro

2

2Drf
��

1
2
��rf � ro � D��D � rf � ro��D � ro � rf��D � rf � ro�.

�1�

Using the formula for the bias (rf � �Bro), this equa-
tion can be rewritten in terms of displacement, bias, and
the observed circle radius:

a � ro
2 cos�1�D2 � �1 � B�ro

2

2Dro
�� Bro

2 cos�1�D2 � �B � 1�ro
2

2D�Bro
�

�
1
2
�	ro��B � 1� � D
	D � ro��B � 1�
	D � ro�1 � �B�
	D � ro��B � 1�
. �2�

In general, the total area of the observed circle is a �
c � �r2

o, and since N � 1, the event frequency P � a �
c. The area of the forecast circle is a � b � �r2

f � B�r2
o.

Therefore, the b and c contingency table elements can
be written in terms of D and B and ro, where a is de-
fined in Eq. (2) above. The d element of the contin-
gency table can be easily computed as a remainder [d �
1 � a � �r2

o(B � 1)]. Given that the total domain area
is fixed at 1.0, the largest observed circle that could be
considered would be ro � �1/� ≅ 0.56. For a fixed bias,
as displacement error increases, the area of overlap will
decrease in size until it reaches zero at D � ro � rf (Fig.
1b). For a fixed displacement error, as the bias in-
creases, the overlap area will increase until the forecast
circle completely envelops the observed circle (Fig. 1c).
In this scenario, the area of overlap is equal to the area
of the observed circle; therefore, a � �r2

o. In addition,
there are no missed events and therefore c � 0. On the
other hand, if the forecast circle is completely envel-
oped by the observed region (Fig. 1d), the overlap area
is equal to the size of the forecast circle, a � �r2

f . In this
situation there are no false alarms and therefore b � 0.

3. Definition of accuracy measures

Several commonly used scores as well as a recently
introduced measure of forecast accuracy will be exam-
ined. The definitions of the scores in terms of the ele-
ments of the 2 � 2 contingency table along with the
possible range of values for each are found in Table 2.
The elements of the contingency table have been com-
puted in terms of B and D for the hypothetical situation
described in section 2. Since many of these scores are
commonly used, only a brief description and associated
references will be provided here. Probability of detec-
tion (POD) is simply the fraction of the observed re-

gion that was correctly predicted, which can vary from
zero to one. Threat score (TS) is the fraction of the
union of observed and forecast areas that was correctly
forecast [Gilbert (1884) called this the ratio of verifica-
tion], which also varies from 0 to 1. Equitable threat
score (ETS) adjusts the threat score in order to remove
the expected size of the correct forecast area due to
random chance [Schaefer (1990) originally called this
the Gilbert skill score]. This adjustment allows the
score to fall below zero; the minimum ETS (��1/3) is
found when the b and c elements of the 2 � 2 contin-
gency table are both equal to 0.5. The true skill statistic
(TSS) is equivalent to the probability of detection mi-
nus the probability of false detection [POFD � b/
(b � d)]. POFD is the ratio of the false alarm area to
the section of the domain that did not observe the
event, which is also known as the false alarm rate.
This should not be confused with the false alarm ratio
[FAR � b/(a � b)], which is the fraction of the forecast
area that did not observe the event. While Doswell et
al. (1990) used the term true skill statistic, Stephenson
(2000) called this measure the Peirce skill score, in
honor of its original discovery by Peirce (1884). In ad-
dition, Richardson (2000) called this the Kuipers score,
and showed that in the simple cost–loss ratio decision
model, TSS is equivalent to the maximum relative eco-
nomic value that can be obtained from a forecast sys-
tem if the cost–loss ratio is equal to the event fre-
quency, and ranges from �1 to 1. The odds ratio skill
score (ODDS) is a function of the odds ratio (� ad/bc)
and varies from �1 to 1 (Stephenson 2000).

Another accuracy measure has been proposed by
Mesinger and Brill (2004), known as the bias-adjusted
threat score (TSA). TSA adjusts the threat score to
account for the impact of bias, with the stated goal of
providing information on “the accuracy of the place-
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ment of forecast events.” To adjust the threat score, a
relationship between the number of forecasts and the
number of correct forecasts was developed. For spatial
forecasts, Mesinger and Brill (2004) assumed that the
change in the number of correct forecasts per unit
change in the number of forecasts was proportional to
the size of the missed event region. This assumption
results in an exponential relationship between the num-
ber of correct forecasts (a) and the number of forecasts
issued (F � a � b):

a�F� � �a � c�	1 � exp� � �F�
. �3�

The parameter  can be determined given sample veri-
fication data from a biased forecasting system and can
be thought of as an inherent measure of performance.
After  is determined and assuming that it remains
constant for a particular forecasting system, one can
estimate the number of correct forecasts corresponding
to an unbiased forecast by setting F � a � c in Eq. (3).
Using this bias-adjusted number of correct forecasts,
the bias-adjusted threat score can be calculated, and is
defined in Table 2 in terms of the elements of the 2 �
2 contingency table. TSA is maximized for c � 0
(POD � 1). For an unbiased forecast (B � 1), TSA and
TS are equivalent, since b � c when B � 1.

4. Results

Results are presented as a function of event fre-
quency, P. The rare event scenario is considered first,
followed by common, then very common events.

a. Rare event

Figure 2 shows how the accuracy measures vary as a
function of B and D for a rare observed event (P ≅ 0.03,
ro � 0.1). As expected, for a fixed D�, POD (Fig. 2a)
increases as B increases, since the forecast circle en-
larges until it eventually “swallows” the observed circle
at POD � 1. For a fixed bias, POD decreases as D�
increases, because the overlap area quickly decreases to
zero as the circles move away from each other. The four
scenarios portrayed in Fig. 1 produce regions within the
POD contour plot that contain specific characteristics.
For instance, POD contours are parallel to the D� axis
in the region of the plot where D� and B are small
(lower-left quadrant in Fig. 2a). In this region the fore-
cast circle is completely enveloped within the observed
circle (e.g., Fig. 1d). In this situation, the b element of
the contingency table is zero, and POD � B. On the
other hand, POD � 1 for large values of B and small
values of D� (lower-right quadrant). This is the region
where the observed circle is contained within the fore-
cast circle (e.g., Fig. 1c). Contours of many of the other
accuracy measures in this region are parallel to the D�
axis (Fig. 2). For relatively large values of D�, there is
no overlap between the forecast and observed circles
(e.g., Fig. 1b) and POD � 0 (upper-left quadrant). In
the region where POD varies between zero and one
and the contours are not parallel to the D� axis, all four
elements of the contingency table are nonzero (as in
Fig. 1a).

TABLE 2. Definitions of performance measures.

Score Definition Range

Probability of detection
POD �

a

a � c

0 � POD � 1

Threat score
TS �

a

a � b � c

0 � TS � 1

Equitable threat score
ETS �

a � arand

a � b � c � arand
,

arand � �a � b��a � c�

�
1
3

� ETS � 1

True skill statistic
TSS �

a

a � c
�

b

b � d
� POD � POFD

�1 � TSS � 1

Bias-adjusted threat score
TSA �

�a � c�1�B � c1�B

�a � c�1�B � c1�B
,

B �
a � b

a � c

0 � TSA � 1

Odds ratio skill score
ODDS �

ad � bc

ad � bc

�1 � ODDS � 1
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For this rare event scenario, TSS and POD are nearly
identical (cf. Figs. 2a and 2b). TSS shows very little
sensitivity to false alarms in this case, since POFD re-
mains insignificant with increasing B for the range of
values analyzed here. The axis of maximum TSS in-

creases nearly linearly in B as D� increases, closely fol-
lowing the POD � 1 contour.

In this rare event situation, the expected size of the
correct forecast region due to random chance is very
small; therefore, TS and ETS (Figs. 2c and 2d) are prac-

FIG. 2. For the rare event situation (P ≅ 0.03, observed circle radius ro � 0.1), accuracy measures as a function
of bias (B) and normalized displacement error (D�): (a) POD, (c) TS, and (e) TSA; (b) TSS, (d) ETS, and (f)
ODDS. Axis of maximum score value is indicated in each plot by a dashed line. Contour interval is 0.1 in each panel
except for ODDS, which uses a 0.2 contour interval.
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tically equal. These scores are maximized at D� � 0 and
B � 1. Generally, the scores drop as D� increases. For
a fixed D�, maximum scores are found at B values
greater than one for all D� � 0, and the B that is asso-
ciated with the maximum score increases with increas-
ing D�. As with POD, contours of each of these scores
are parallel to the D� axis when B and D� are relatively
small (lower-left quadrant) because the forecast area is
completely enclosed within the observed area. Simi-
larly, the contours are vertical in the lower-right quad-
rant because the observed area is located entirely
within the forecast area.

By comparing Figs. 2c and 2e, one can readily see the
impact of the bias adjustment that distinguishes TSA
from TS. TSA is generally larger than TS for B � 1, and
lower than TS for B � 1. For the most part, the TSA
contours slope in the positive B direction, indicating
that forecasts with higher biases will generally be pre-
ferred by this measure. While TSA displays a depen-
dence on B, this sensitivity is relatively small over cer-
tain regions of the D�–B phase space. Notably, com-
pared to TS, TSA is considerably less sensitive to B in
the region where B varies from about 0.5 to 1.5, espe-
cially where D� is close to 1. This region of the phase
space is particularly relevant because operational fore-
cast systems tend to be calibrated to produce B as close
to one as possible. Outside of this region, however,
TSA has some undesirable characteristics. For ex-
ample, it is very sensitive to D� as it approaches its
maximum value in the lower-right quadrant in Fig. 2e.
As previously noted, TSA is maximized when POD �
1, which occurs in this quadrant (cf. Figs. 2c and 2e).

ODDS (Fig. 2f) behaves quite differently than the
other accuracy measures. Values of ODDS are near
their maximum across the entire range of B for all D� �
1. This is due to the fact that, for rare events, the 2 � 2
contingency table is dominated by the d element (cor-
rect nulls) of the contingency table. For P ≅ 0.03, the a,
b, and c elements are O(10�2), while d remains close to
1.0. Therefore, ad � bc and ODDS becomes approxi-
mately �1. ODDS becomes very sensitive to displace-
ment error as D� increases above 1, dropping off
quickly to the minimum value of the score for D�
greater than �2.

b. Common event

Figure 3 displays the various accuracy measures as a
function of B and D� for a relatively common observed
event (P ≅ 0.28, ro � 0.3). Since the observed circle has
grown in size, in the upper-right quadrant of the figures
where the bias and normalized displacement errors are
large, the union of the observed and forecast circles

would result in a total area larger than the fixed veri-
fication domain size (N � 1). Therefore, accuracy mea-
sures cannot be computed in this region.

As in the rare event case, for a fixed D�, POD (Fig.
3a) increases with increasing B. In fact, POD, TS,
and TSA (Figs. 3a, 3c, and 3e) behave in exactly
the same manner as in the rare event case (Figs. 2a, 3c,
and 3e). This is not surprising, since the scores are
plotted in normalized displacement error space. For
example, consider the situation where the observed and
forecast circles are the same size and are separated by
the length of the observed circle radius (Fig. 4, B � 1,
D� � 1). In terms of absolute displacement error (D),
the larger circles are farther apart than the smaller
circles. However, in this situation, the relative arrange-
ment of circles remains constant as long as B and D�
are held fixed. Therefore, the fraction of the observed
area that is correctly forecast (POD ≅ 0.39), as well
as the fraction of the union of observed and forecast
areas that is correct (TS ≅ 0.24), will remain unchanged
for a given B and D� as the size of the observed circle
changes. Since TSA is a function of POD and B, it
also remains unchanged for a given B and D� as P
changes.

In contrast, ETS, TSS, and ODDS all show a sensi-
tivity to P. For example, while TS and ETS behave
similarly for rare observed events, ETS is quite differ-
ent from TS in the relatively common event situation
(cf. Fig. 3d to Fig. 3c). This difference in behavior is due
to the fact that the expected amount of correct random
forecasts increases with event frequency. The axis of
maximum TS slopes in the positive B direction, while
the maximum ETS scores are found consistently near
B � 1 for a wide range of D� values, indicating a high
degree of equitability for ETS at this level of P. ETS
has also become more sensitive to D� as P has in-
creased. For a fixed B, ETS decreases more rapidly
with increasing D� in the common event case (Fig. 3d)
than in the rare event case (Fig. 2d).

In contrast to the rare event scenario, TSS behaves
very differently from POD in this relatively common
event analysis (cf. Figs. 3a and 3b). This difference oc-
curs because the effect of POFD becomes significant in
the computation of TSS, since the size of the observed
“no” region (denominator of POFD) is considerably
smaller in this situation. The value of B that produces
the maximum TSS score increases from B � 1 to B ≅ 1.5
as D� increases from zero to 0.8, then decreases to zero
bias at D� � 1.2. Similarly to ETS, the sensitivity of TSS
to D� increases in the common event case.

ODDS (Fig. 3f) behaves quite differently from the
other scores, with little variation in score for fixed D� as
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B changes for a wide range of D�. In fact, for the range
of D� between zero and one, ODDS reaches a mini-
mum value near B � 1, as opposed to a maximum value
for the other accuracy measures. The ODDS minimum
near B � 1 occurs because the denominator in the
ODDS formula (ad � bc) reaches a relative maximum
in this region of the D�–B phase space for the common
event situation.

c. Very common event

Figure 5 displays the various accuracy measures as a
function of bias and displacement errors for a very com-
mon observed event (P ≅ 0.50, ro � 0.4). Since the
observed circle covers slightly more than one-half of
the verification domain, accuracy measures cannot be
computed over a considerable portion of the upper-

FIG. 3. As in Fig. 2 except for the relatively common event situation (P ≅ 0.28, observed circle radius ro � 0.3).
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right quadrant of the figures. For reasons discussed pre-
viously, the behavior of POD, TS, and TSA (Figs. 5a,
5c, and 5e) is the same as it was with smaller values
of P.

In this very common event situation, TSS and ETS
(Figs. 5b and 5d) display quite different behavior than
they showed in the rare (Figs. 2b and 2d) and relatively
common (Figs. 3b and 3d) event cases. In this situation,
the ETS and TSS scores are maximized for B values less
than one for all D� � 0. The value of B that is associated
with the maximum score decreases with increasing dis-
placement error, until it reaches B � 0 at D� ≅ 1. ETS
is very sensitive to the expected amount of correct ran-
dom forecasts ar in the very common event scenario.
Specifically, when P ≅ 0.50, ar is �50% of the forecasted
area. Therefore, in order for the numerator in the ETS
formula to increase with B for a given D�, more than
50% of the additional forecast area resulting from an
increase in B must be correct. In addition, since P ≅
0.50, a � c ≅ b � d; therefore, TSS simplifies to (a �
b)/P. Similarly, TSS will increase with B only when
more than half of the additional forecast area is correct.
This can only occur in those situations where the ob-

served area nearly encompasses the forecasted area
(small D� and B), which explains why the maximum
ETS and TSS scores are found in this region. The sen-
sitivity of ETS and TSS to D� has increased further in
this very common event case; that is, the spacing be-
tween contours in the D� direction continues to shrink
as P increases (e.g., cf. Figs. 2d, 3d, and 5d).

Once again, ODDS (Fig. 5f) behaves differently than
the other accuracy measures. Values of ODDS are near
their maximum across the entire range of B for all D� �
0.5. In this region, either the forecast area is surrounded
by the observed area (b � 0, lower left) or POD � 1
(c � 0, lower right), resulting in ODDS � 1. Beyond
this region, many of the ODDS contours slope in the
negative B direction, as do the ETS and TSS contours,
indicating a prejudice by these measures toward fore-
casts with smaller B values in this very common event
situation.

5. Discussion

The results demonstrate that POD, TS, and TSA dis-
play consistent behavior as P changes, while other mea-
sures, such as TSS and ETS, show considerable sensi-
tivity to event frequency. For example, when B and D�
are held constant at 1.0 so that the degree of overlap
between forecast and observed regions does not change
(as in Fig. 4), as P is varied from 0.03 to 0.28 TSS
changes from 0.37 to 0.15, while TS remains fixed at
0.24. At first glance, these results appear to contradict
the work of Mason (1989) who showed that TSS was
independent of P while TS was quite sensitive to it.
These differences can be explained by contrasting Ma-
son’s experimental design to that used here. Our strat-
egy is to examine the sensitivity to P without changing
the relative spatial configuration of forecast and ob-
served areas. For a given B and D�, P is changed simply
by modifying the scale of the combined forecast and
observed circles relative to the fixed verification do-
main (see Fig. 4). In this approach, the relative arrange-
ment of the forecast and observed circles is not altered;
therefore, the ratio of the overlap area to the union of
the forecast and observed areas (TS) remains un-
changed. Similarly, POD, TSA, and FAR do not
change for a given B and D� as P varies. However,
POFD does change with P under these conditions.

In contrast, Mason (1989) assumed that POD and
POFD remained fixed when P varied. Although this
strategy results in a constant TSS and ODDS with vary-
ing P, its implications for the relative spatial configura-
tion of forecast and observed areas are not obvious.
Holding POD and POFD constant while changing P
requires that both B and D� change. This is difficult to

FIG. 4. Examples of holding B and D� fixed while changing P (or ro):
(a) P ≅ 0.03, ro � 0.1, B � 1, and (b) P ≅ 0.28, ro � 0.3, B � 1.
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conceptualize, but is demonstrated graphically in Fig. 6.
In this figure, POD and POFD maintain the same val-
ues (POD � 0.7, POFD � 0.1) as the observed circle
increases in coverage. To generate these POD and
POFD scores in the rare event situation (Fig. 6a; P �
0.1) the forecast circle must be larger than the observed
circle (B � 1.6), with a D� of 0.78. In this case TS is 0.37.
As the observed event increases in coverage (Fig. 6b;

P � 0.3), the size of the region that does not observe
the event decreases; therefore, the size of the forecast
area must shrink as well in order to maintain a constant
POFD. In this scenario B has decreased to 0.93. In
addition, in order to keep POD constant with a smaller
forecast circle, D� must decrease to 0.4. In this case, the
threat score has increased to 0.57. These trends con-
tinue as the observed event increases in coverage (Fig.

FIG. 5. As in Fig. 2 except for the very common event situation (P ≅ 0.50, observed circle radius ro � 0.4).
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6c; P � 0.5), B decreases to 0.8, D� decreases further to
0.28, and TS increases to 0.63. Although D� decreases
with increasing P with fixed POD and POFD, it is in-
teresting to note that the absolute displacement error
remains nearly constant in this example (D � 0.1).
Clearly, any conclusions regarding the sensitivity of
TSS and TS to P depend upon the strategy used to
vary P.

6. Summary

In this work, the sensitivity of five commonly used
performance measures to displacement error, bias,
and event frequency was analyzed for hypothetical
forecasting scenarios. A newly developed measure was
examined as well. The different scenarios were ex-
pressed using two circles: one representing the area in
which the event was observed, the other the area where
the event was predicted to occur. This simple model
allowed for full control and manipulation of the event
frequency, bias, and displacement errors as well as de-
tailed analysis of the sensitivity of the scores to these
factors.

The behavior of several scores (ETS, TSS, ODDS)
changed considerably as event size/frequency changed.
In general, for rare observed events, these accuracy
measures were maximized for bias greater than one,
indicating that the scores encouraged “hedging” toward
overforecasting. This behavior implies that the scores
were more sensitive to missed events than false alarms.
For larger, relatively common events, these scores were
shown to be less sensitive to bias, displaying nearly con-
stant values across a wide range of biases for a given
displacement error. This behavior indicates that these
scores punished missed events and false alarms simi-
larly. However, for very common events, these scores
were maximized for bias values less than one. In this
case, the scores were more sensitive to false alarms than
missed events. These measures were also generally
found to be more sensitive to displacement error as
event frequency increased. When using ETS, TSS, or
ODDS to compare multiple forecasts, users should be
aware of the considerable sensitivity to P. Thus, the
same event frequency should be used for all forecast
systems, and the same geographical domain should be
used for all forecasts since changing the domain size
effectively changes P.

The sensitivities of POD, TS, and TSA to changes in
bias and displacement error were shown to be indepen-
dent of observed event frequency. For example, POD
and TS both showed a sensitivity to bias, with higher
bias resulting in higher scores. TSA showed less sensi-
tivity to bias over a significant portion of the bias-
displacement phase space, along with undesirable sen-
sitivities in some other regions of this space.

The insensitivity of TS to changes in event frequency
appears to contradict the work of Mason (1989). This
apparent contradiction can be reconciled by contrasting
Mason’s experimental design to that used in this work.
Our strategy was to maintain the relative spatial ar-
rangement of the forecast and observed areas with

FIG. 6. Examples of holding POD (� 0.7) and POFD (� 0.1)
fixed while changing P: (a) P � 0.1, B � 1.6, D� � 0.78; (b)
P � 0.3, B � 0.93, D� � 0.40; and (c) P � 0.5, B � 0.8, D� �
0.28.
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changing event frequency, while Mason (1989) main-
tained a constant POD and POFD with varying P. To
keep POD and POFD fixed, the relative spatial con-
figuration of the forecast and observed regions must
change when event frequency changes. Any conclu-
sions regarding the sensitivity of accuracy measures to
event frequency depend upon the assumptions used in
the experimental design.

Although the two-circle scenario utilized in this study
is idealized, the general conclusions that it allows us to
draw are not strongly dependent on geometry. The
simple two-circle model allows us to clarify and con-
ceptualize the sensitivities of various performance mea-
sures in a quantitative way. For example, most users of
these scores have long recognized the sensitivity to bias,
but the character of this sensitivity has remained poorly
understood for too long. The plots contained herein
provide a useful reference for specific applications. For
example, if one can estimate P, D, and B for a given
situation, he or she can estimate the sensitivity of scores
to changes in any one of these variables by referring to
the appropriate plots. In general, except for a few
scores under very specific conditions, all of the perfor-
mance measures analyzed in this work encouraged
hedging of one form or another.

Every user of forecast information has a distinct
amount of sensitivity to the different types of errors
that can be realized in a dichotomous forecast. This
sensitivity will vary depending upon the weather event,
the “expenses” suffered by the user resulting from false
alarms or missed events, etc. To provide information
that is consistent with a user’s impression of the value
of a forecast, a performance measure must be sensitive
to the various errors in a manner that is consistent with
that particular user. Regardless of whether or not a
score provides information that is consistent with value,
it is important for users of verification information to
understand the preferences and prejudices of the mea-
sures used to evaluate forecasting systems.
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