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ABSTRACT

An automated procedure for classifying rainfall systems (meso-� scale and larger) was developed using
an operational analysis of hourly precipitation estimates from radar and rain gauge data. The development
process followed two main phases: a training phase and a testing phase. First, 48 hand-selected cases were
used to create a training dataset, from which a set of attributes related to morphological aspects of rainfall
systems were extracted. A hierarchy of classes for rainfall systems, in which the systems are separated into
general convective (heavy rain) and nonconvective (light rain) classes, was envisioned. At the next level of
classification hierarchy, convective events are divided into linear and cellular subclasses, and nonconvective
events belong to the stratiform subclass. Essential attributes of precipitating systems, related to the rainfall
intensity and degree of linear organization, were determined during the training phase. The attributes
related to the rainfall intensity were chosen to be the parameters of the gamma probability distribution fit
to observed rainfall amount frequency distributions using the generalized method of moments. Attributes
related to the degree of spatial continuity of each rainfall system were acquired from correlogram analysis.
Rainfall systems were categorized using hierarchical cluster analysis experiments with various combinations
of these attributes. The combination of attributes that resulted in the best match between cluster analysis
results and an expert classification were used as the basis for an automated classification procedure.

The development process shifted into the testing phase, where automated procedures for identifying and
classifying rainfall systems were used to analyze every rainfall system in the contiguous 48 states during
2002. To allow for a feasible validation, a testing dataset was extracted from the 2002 data. The testing
dataset consisted of 100 randomly selected rainfall systems larger than 40 000 km2 as identified by an
automated identification system. This subset was shown to be representative of the full 2002 dataset. Finally,
the automated classification procedure classified the testing dataset into stratiform, linear, and cellular
classes with 85% accuracy, as compared to an expert classification.

1. Introduction

Precipitation-producing weather systems appear in
many forms. For example, some are clearly linear in
shape, whereas others are more circular; some contain
scattered regions of intense rainfall, while others pro-
duce widespread light precipitation. Many other dis-
tinctions could be applied.

It can be very useful to describe rainfall systems using
these morphological characteristics. For example, a
classification based upon attributes of this kind could
be used as the basis for climatological studies of pre-

cipitation systems (e.g., Houze et al. 1990). For this
study, classification procedures were developed with
forecast verification interests in mind. In particular, this
study determined ways of describing specific aspects of
precipitating systems using statistical techniques. These
characteristics were successfully used as the foundation
of an automated classification procedure. We anticipate
that characteristics that demonstrate the ability to clas-
sify rainfall systems will also be useful in comparing
observed and predicted rainfall patterns. Such a com-
parison is motivated by the desire to validate the “re-
alism” of forecasts, a fundamental aspect that appears
to be missing in traditional meteorological verification
strategies (Anthes 1983).

Classification is the process of systematically placing
objects into categories or classes, based upon the simi-
larity of an object to other members of a group. An
object is the general term representing an individual
entity that one wishes to classify. Characteristics that
describe the objects are often referred to as attributes.
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Similarity is the degree of sameness between objects,
which is typically determined by some measure of dis-
tance or correlation. In particular, one can represent
the set of characteristics that describe each object as an
attribute vector. An intuitive measure of distance com-
monly used in classification is the Euclidean distance,
which is the well-known L2 or vector norm between
attribute vectors. In classification, the process of gen-
erating attributes that characterize objects in a useful
way is known as feature extraction (Duda et al. 2000).
Useful features are those that help the classification
procedure place objects into their proper class. The
general problem in classification is to determine the
class of an object based upon its similarity to the char-
acteristics of known classes or other objects in a set of
data. Members of the same class should be more similar
to each other than they are to objects belonging to
other classes. This is the guiding principle for establish-
ing a set of classification rules that assign objects to
classes. The classification rules can be developed first
from a training dataset and then can be used for assign-
ing classes to other objects previously unseen. Cluster
analysis, a general name for a variety of mathematical
methods that can be used to determine which objects in
a set are similar, is often used as a classification tool
(Romesburg 1984).

Several classes of rainfall systems have previously
been defined; some based upon the underlying physical
processes that produced the rainfall, such as the general
classes of convective and stratiform (Houghton 1968).
Other general classes were based upon the space and
time scales associated with each system, such as synop-
tic and mesoscale (Austin and Houze 1972; Orlanski
1975). Previous automated rainfall classification tech-
niques have focused on segmenting rainfall systems and
can be characterized as “microclassification” ap-
proaches. For example, several methods of identifying
and tracking individual thunderstorms have been de-
veloped for short-term forecasting purposes or for use
in weather-related decision support systems (e.g.,
Kessler 1966; Wilson et al. 1998; Lakshmanan 2001).
Other researchers have developed automated rainfall
classification procedures in order to estimate vertical
latent heating profiles or improve rainfall estimation
(e.g., Steiner et al. 1995; Yuter and Houze 1997; Big-
gerstaff and Listemaa 2000). These classification
schemes subdivide a rainfall system into convective and
stratiform segments on a pixel-by-pixel basis.

In contrast, this work takes a “macroclassification”
approach to classify rainfall systems in their entirety, by
using statistically based measures of the morphological
characteristics of each system. In a typical mesoscale
convective system (MCS), the convective and strati-
form regions are interrelated and interdependent parts
of a system. For example, the stratiform region would
not exist if the convection had not transported ice crys-
tals away from the convective updrafts (Gamache and
Houze 1983). In some cases, evaporation of rainfall

within the stratiform region helps to enhance the me-
soscale circulation that allows the convection to propa-
gate (e.g., Zhang and Gao 1989). Therefore, in this
work an MCS was considered a “convective” entity and
was not subdivided into convective/stratiform regions.

Previous comprehensive studies of MCSs were also
performed using a “macroclassification” approach (e.g.,
Bluestein and Jain 1985; Bluestein et al. 1987; Blan-
chard 1990; Houze et al. 1990; Geerts 1998; Parker and
Johnson 2000; Jirak et al. 2003). These studies exam-
ined MCSs primarily using visual analysis of radar im-
ages. Rainfall systems were classified based upon how
they developed over time and how closely they
matched archetypical examples. The common charac-
teristic among these studies was the use of visual in-
spection of the radar images as the primary analysis
tool. A primary goal of this work is to develop an au-
tomated classification procedure that can be applied in
place of the subjective analysis techniques previously
used. A previous example of such an automated classi-
fication procedure that utilized infrared satellite imag-
ery (Evans and Shemo 1996) was recently used to docu-
ment the diurnal cycle of organized convection over the
global Tropics and midlatitudes (Tsakraklides and
Evans 2003). The current work is unique since rainfall
estimates from radar and rain gauge data are utilized,
rather than the satellite data used in the Evans and
Shemo (1996) procedure.

Ideally, one would perform a classification of rainfall
systems based upon observations of the physical pro-
cesses occurring within each system. However, given
the current capabilities of observational platforms, one
can only routinely observe the shape and structure of
an object and cannot observe the details that allow for
understanding of the function of every system. Al-
though in some situations, it may be possible to deter-
mine relationships between statistical measures of
structure and the physical processes operating within a
system (e.g., Perica and Foufoula-Georgiou 1996). In
this case, such determination is left for future work.

The following general hierarchy of classes for rainfall
systems was used in this work. The first branch of the
classification separates rainfall systems into convective
and nonconvective classes. Precipitation systems be-
longing to the convective class are those that contain
relatively high rainfall rates. Presumably, the high pre-
cipitation rates are associated with circulations contain-
ing upward vertical motions larger than the fall speed of
precipitation particles (e.g., Houghton 1968; Houze
1997). The large upward vertical motions result in rapid
growth of raindrops by collection of cloud water in the
updraft (Houghton 1968). On the other hand, precipi-
tation systems belonging to the nonconvective class are
those that produce relatively low precipitation rates.
The low precipitation rates are generated by much
weaker upward vertical motions, such as the wide-
spread lifting associated with large-scale warm advec-
tion. As described by Yuter and Houze (1997), “the fall
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speeds of the precipitating ice particles (�1–2 m s�1;
Locatelli and Hobbs 1974) far exceed the magnitude of
the vertical air motion” for members of this class. The
main precipitation particle growth process in this case is
diffusion (Houghton 1968), a slow process. Since rou-
tine observations of vertical motion are not available,
measurements of precipitation accumulation were used
in this work to distinguish between convective and non-
convective rainfall systems. Specifically, systems pro-
ducing higher precipitation rates were classified as con-
vective and others were considered stratiform.

The next branch of the classification hierarchy sepa-
rates convective systems based upon the structure of
the rainfall pattern, creating linear and cellular sub-
classes. In the linear class, the convective precipitation
exhibits a degree of elongation or linear organization,
similar to the elongated classes of Anderson and Arritt
(1998) and Jirak et al. (2003). A rainfall system belong-
ing to the cellular class is characterized by convective
precipitation elements somewhat randomly positioned
throughout the system, akin to the unclassifiable class
of Houze et al. (1990) and the chaotic class of Blan-
chard (1990). In this work, all nonconvective systems
belong to the stratiform subclass. Admittedly, the pro-
posed classification terminology is somewhat ambigu-
ous. For instance, many systems classified as linear will
contain convective cells and a region of stratiform rain.
However, this general classification is designed to be
consistent with further refinement in the future. For
example, subclasses of cellular systems that indicate the
degree of discreteness of the convective precipitation
could be created, such as isolated cells and multicell
clusters. Since cell is a common term among these re-
lated subclasses, cellular was chosen as the parent class
designation.

The process used in this work to develop an auto-
mated classification procedure included collection of a
dataset for training and testing, creation of methods of
identifying rainfall systems or objects, “training” the
classification procedure by determining a set of features
that describe the objects in a useful manner, creation of
a classification procedure by establishing rules for par-
titioning objects into the classification hierarchy, and
testing the classification procedure. In this work, a na-
tional mosaic of high-resolution rainfall data, known as
the “stage IV” analysis (Baldwin and Mitchell 1998),
was used to create a dataset for the classification de-
velopment process. Experiments were performed on a
training dataset to find a set of characteristics that pro-
duced results from a classification using a cluster analy-
sis algorithm that was in good agreement with a classi-
fication performed by a human. These characteristics
were used as the basis of an automated classification,
which was validated using an independent testing
dataset. This evaluation showed that the classification
procedure correctly placed 85% of the objects into their
linear, cellular, and stratiform classes. It should be
noted that this procedure was developed and tested

using relatively large-scale rainfall systems (meso-� and
larger). While this work represents the initial steps to-
ward the ultimate goal of creating a well-refined, com-
pletely automated classification system, these results
show that the procedures demonstrated here can be
used as a foundation for continued development and
refinement.

A description of the training phase of the process of
developing an automated classification procedure is
presented in section 2. This includes descriptions of
precipitation datasets, objective criteria used in expert
classification, feature extraction methods, and results of
cluster analysis experiments. The testing phase of this
development process is documented in section 3. This
includes discussion of the automated procedures for ob-
ject identification and classification, summary statistics
obtained from analysis of an entire year of rainfall data,
and an independent evaluation of the classification pro-
cedure. Concluding remarks and a discussion of future
work are provided in the final section.

2. Training phase

The objective of this work is to develop an auto-
mated classification procedure using statistically based
attributes that characterize various morphological as-
pects of rainfall systems. Such characteristics may even-
tually be used to compare predicted and observed rain-
fall systems in a forecast verification system. However,
it is not clear a priori which statistical characteristics of
rainfall systems will result in an automated classifica-
tion that agrees with a meteorologist’s expert opinion.
This section describes the training phase in the process
of developing the automated classification procedure.
To discover a set of essential features that allow proper
classification, a training dataset was used. Each rainfall
analysis is treated as a snapshot, and the rainfall sys-
tems are analyzed without regard to their temporal evo-
lution. A classification was first performed manually, by
an expert in meteorological analysis. Trial attributes
that characterize several morphological aspects of rain-
fall systems were then obtained. Experimental classifi-
cations were performed using cluster analysis with a
variety of combinations of the trial attributes. The com-
bination of trial attributes in the cluster analysis experi-
ments that resulted in the best agreement with an ex-
pert classification became the basis for an automated
classification procedure. Once the training phase was
complete, the development process moved to the test-
ing phase, which will be described in section 3.

a. Precipitation data

To begin this work, a dataset used in the training and
testing phases was established. The so-called stage IV
rainfall analysis (Fulton et al. 1998; Seo 1998; Baldwin
and Mitchell 1998) produced at the National Centers
for Environmental Prediction (NCEP) was obtained.
The stage IV analysis is a national mosaic of optimal
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estimates of 1-h accumulated rainfall using radar and
rain gauge data, which are available at the top of every
hour on a 4 km � 4 km mesh covering the lower 48
states. The analysis includes a mean radar bias correc-
tion, separate radar-only and gauge-only analysis mo-
saics, and a “multisensor” analysis combining the radar
and gauge estimates using an optimal estimation tech-
nique (Seo 1998). The multisensor mosaic was used in
this work.

One hundred forty-eight separate precipitation
events occurring at different times and locations across
the United States were selected for inclusion in the
overall precipitation dataset. This dataset was divided
into a training dataset, consisting of 48 cases, and a
testing dataset containing 100 events. Briefly, the test-
ing dataset consisted of randomly selected rainfall sys-
tems observed during 2002 that were larger than 40 000
km2 as identified by an automated identification sys-
tem. Details of the testing dataset are left to section 3.
However, for the training dataset, events were selected
by hand, and the event selection criteria were based
upon the occurrence of typical rainfall patterns that are
often found across the United States during the year.
The late summer–fall 2000 time period was selected
because of data availability and because this period
typically represents a transition from warm-season con-
vective to cool-season stratiform precipitation regimes.
For the training dataset, the size of the domain was
chosen to be fixed at 128 � 128 4-km grid boxes, which
is approximately 500 km by 500 km. For each case in
the training set, the domain was centered visually near
the event of interest. This method of selecting rainfall
systems for the training dataset obviously cannot be
used as an automated identification procedure. The au-
tomated rainfall object identification procedure that
was developed to analyze rainfall events beyond the
training dataset in this work is described in section 3a.
The purpose of the training dataset was to test the use-
fulness of various trial attributes for eventual use as the
basis for an automated classification procedure. The

number of cases contained within the training dataset
(48) may seem small, given the wide spectrum of rain-
fall systems occurring in nature. However, the positive
results obtained in the testing phase (section 3) dem-
onstrate that the training dataset was large enough to
sufficiently sample the natural variability of rainfall sys-
tems, at least for the general classification hierarchy
used in this work. Certainly, more cases will be required
to further refine the classification procedure as the de-
velopment process is revisited in future work.

b. Expert classification

Expert classification of the rainfall systems in the
precipitation dataset was based entirely upon the 1-h
accumulated rainfall pattern; no other information
(such as meteorological conditions, temporal continui-
ty, location, time of year, time of day) associated with
the events was provided. Objective criteria were used in
the expert classification. Convective events were de-
fined as those where a substantial fraction (� �5%) of
the rainfall system received rain rates of 5 mm hr�1 or
higher. Otherwise, the system was classified as strati-
form. The 5 mm hr�1 threshold is similar to other rain
rate and radar reflectivity thresholds that have been
used in previous research to delineate convective and
stratiform regions. For example, Johnson and Hamilton
(1988) used a 6 mm hr�1 rain rate threshold, while
Geerts (1998) used the 20-dBZ threshold to delineate
the convective region as long as there was a maximum
reflectivity of at least 40 dBZ embedded within it. Ex-
amples of convective events from the training dataset
are given in Figs. 1a and 1b, which show that a signifi-
cant fraction of each system received rainfall greater
than 5 mm in an hour. An example of a stratiform
(nonconvective) event is provided in Fig. 1c, where
widespread light precipitation was observed. Within
convective events, the region of heavier rainfall was
surrounded by a rectangular bounding box, rotated to
be parallel to the primary axis of the convective rainfall.
If the aspect ratio of such a rectangle was 3 or greater,

FIG. 1. Cases (a) 6, (b) 30, and (c) 41 of the training dataset. Grayscale on the side of each image indicates rainfall amounts in mm.
Contour intervals are (a) 2, (b) 5, and (c) 1 mm.
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the system was classified as linear (e.g., Fig. 1a), other-
wise it was considered cellular (e.g., Fig. 1b). The 3 to 1
ratio was relaxed from the 5 to 1 ratio used by Bluestein
and Jain (1985) to allow for the motion of rainfall sys-
tems since the current work used precipitation accumu-
lated over 1 h. Table 1 provides detailed information
for the training dataset along with the results of the
expert classification and other attributes that will be
described in section 2d. Note that the events were not
uniformly distributed, as the majority of the events in
the training dataset belonged to the convective class. A
larger sample of such events was necessary, since the

characteristics of convective events vary much more
than those associated with stratiform systems. Results
of expert classification of the testing dataset are dis-
cussed in section 3.

c. Object identification

Rainfall systems are defined as contiguous areas of
precipitation, similar to Ebert and McBride (2000). For
each of the 48 events found within the training dataset,
the pattern of nonzero rainfall from the entire 500 km
by 500 km domain plus a surrounding “trace region” of
approximately 15% of the area of measurable rainfall

TABLE 1. Location, time, date, expert classification, gamma parameters, area, and eccentricity of 0.6 correlogram contour for the 48
cases of the training dataset.

Case
Central location

(°N, °W) Date, time (UTC)
Expert

classification
Gamma-shape

parameter
Gamma-scale

parameter
Eccentricity
0.6 contour

Area 0.6
contour

1 42.8, 94.9 17 Aug 2000, 0500 Linear 0.48 6.46 5.00 65.0
2 39.0, 90.0 05 Oct 2000, 1100 Linear 0.62 2.11 2.58 74.8
3 42.9, 123.7 28 Oct 2000, 1100 Linear 0.63 1.47 4.04 202.2
4 36.6, 99.4 25 Oct 2000, 0200 Linear 0.42 4.52 2.48 32.2
5 39.2, 97.3 29 Oct 2000, 0700 Linear 0.48 1.28 4.14 165.5
6 39.5, 82.5 21 Sep 2000, 0200 Linear 0.30 3.16 5.06 126.5
7 39.5, 82.5 21 Sep 2000, 0300 Linear 0.26 2.97 5.16 103.2
8 37.0, 102.0 01 Nov 2000, 0100 Linear 0.44 3.57 5.06 40.5
9 38.4, 97.2 22 Sep 2000, 2300 Linear 0.37 7.54 2.76 22.1

10 40.0, 83.7 21 Sep 2000, 0100 Linear 0.49 1.92 2.83 56.6
11 35.5, 78.5 25 Sep 2000, 2300 Linear 0.44 3.60 2.49 72.2
12 39.9, 86.3 20 Sep 2000, 2100 Linear 0.39 3.14 2.77 47.0
13 40.0, 85.7 20 Sep 2000, 2200 Linear 0.42 2.73 3.10 77.6
14 40.1, 85.1 20 Sep 2000, 2300 Linear 0.52 2.75 2.62 68.0
15 34.8, 97.2 01 Nov 2000, 1800 Linear 0.24 6.63 8.68 43.4
16 35.3, 87.6 09 Nov 2000, 0400 Linear 0.52 5.03 3.04 109.5
17 40.2, 84.5 21 Sep 2000, 0000 Linear 0.52 2.17 2.30 39.1
18 35.5, 85.2 25 Sep 2000, 0900 Linear 0.16 8.13 3.40 61.2
19 38.8, 90.8 25 Sep 2000, 1000 Cellular 0.59 2.44 2.62 89.2
20 40.0, 86.0 04 Oct 2000, 2200 Cellular 0.33 4.32 3.07 27.7
21 36.9, 97.7 25 Oct 2000, 1600 Cellular 0.67 3.13 2.70 54.0
22 39.1, 104.2 17 Aug 2000, 2200 Cellular 0.19 4.31 2.12 4.2
23 41.4, 92.8 04 Oct 2000, 0200 Cellular 0.40 2.72 2.09 35.5
24 31.2, 101.6 17 Oct 2000, 1300 Cellular 0.38 7.37 1.86 24.2
25 40.0, 86.0 04 Oct 2000, 2300 Cellular 0.52 3.45 2.16 69.1
26 40.0, 86.0 05 Oct 2000, 0000 Cellular 0.46 3.49 1.50 60.0
27 40.0, 86.0 05 Oct 2000, 0100 Cellular 0.52 3.06 1.30 52.2
28 40.0, 86.0 05 Oct 2000, 0200 Cellular 0.51 2.65 1.49 59.7
29 38.8, 90.8 25 Sep 2000, 1100 Cellular 0.54 2.33 1.84 222.5
30 32.4, 93.0 05 Oct 2000, 2300 Cellular 0.17 5.40 1.58 6.3
31 32.3, 110.0 17 Aug 2000, 2300 Cellular 0.14 11.94 1.00 1.0
32 31.8, 85.8 22 Sep 2000, 1100 Cellular 0.31 5.05 2.69 10.8
33 39.3, 88.9 25 Sep 2000, 12000 Cellular 0.57 2.01 1.62 110.0
34 30.0, 99.6 02 Nov 2000, 2100 Cellular 0.22 6.46 3.61 3.6
35 35.0, 95.5 16 Oct 2000, 0300 Cellular 0.49 3.18 1.56 62.3
36 41.89, 86.1 17 Aug 2000, 1400 Cellular 0.52 2.61 1.72 112.0
37 38.5, 83.2 17 Aug 2000, 1800 Cellular 0.30 5.14 1.98 49.5
38 44.6, 123.3 10 Oct 2000, 0200 Stratiform 0.50 1.16 1.26 25.3
39 45.1, 123.1 01 Oct 2000, 0300 Stratiform 0.52 0.92 1.63 32.6
40 36.1, 118.7 10 Oct 2000, 0600 Stratiform 0.51 0.62 1.63 55.3
41 38.7, 94.5 25 Sep 2000, 0000 Stratiform 0.76 0.46 1.33 54.3
42 41.2, 76.3 26 Sep 2000, 1500 Stratiform 0.59 0.57 1.52 38.1
43 44.6, 123.3 10 Oct 2000, 0000 Stratiform 0.62 0.62 2.11 27.5
44 34.6, 92.1 04 Nov 2000, 0900 Stratiform 0.73 0.71 2.24 8.9
45 42.3, 93.6 06 Nov 2000, 1900 Stratiform 1.65 0.70 1.42 103.9
46 34.2, 97.4 08 Nov 2000, 1000 Stratiform 0.59 0.94 1.70 34.1
47 44.6, 123.3 10 Oct 2000, 0100 Stratiform 0.67 0.62 1.52 38.1
48 30.3, 97.7 18 Nov 2000, 1600 Stratiform 1.11 0.94 1.30 65.2
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was considered an object for classification. Details of
the automated object identification procedure used for
the testing dataset are left to section 3. An estimation of
the number of rainfall values below the instrument de-
tection limit (“trace”) was necessary for the estimation
of various statistical parameters. Hosking and Stow
(1987) studied high-resolution measurements of rainfall
and found that 30%–40% of nonzero rain periods pro-
duced rainfall accumulations less than the resolvable
limit by conventional recording rain gauges. Spatially, it
is reasonable to expect that the size of the area receiv-
ing “trace” amounts of precipitation to be some frac-
tion of the total area receiving detectable precipitation.
The fraction used in this work was determined by ex-
periment. A gamma probability density function was fit
to the frequency distribution of rainfall for each of the
48 cases in the training dataset for a variety of “trace
fraction” values using the maximum likelihood estima-
tion method of Wilks (1990). The median of the 48
trace fractions that resulted in the best fit (in terms of
mean absolute error) of the gamma distribution to the
observed histograms in the dataset was 18%. As an
approximation to this, the size of each object was in-
creased by roughly 15% by extending the edge of the
measurable precipitation region by a constant number
of analysis grid boxes in each direction, figured by as-
suming a circular area of precipitation.

d. Attribute selection

Numerous attributes were investigated for their abil-
ity to allow the classification system to arrange rainfall
systems into their proper classes. Several of the attrib-
utes that were found to be useful are described below.
Given the general nature of the classification hierarchy
used in this work, many of these attributes are invariant
to translation, rotation, locations of maxima, and spa-
tial scale. If one wishes to design a more refined clas-
sification procedure, additional attributes that allow for
proper discrimination of objects into the desired clas-
sification hierarchy must be included.

1) INTENSITY-RELATED ATTRIBUTES

One might expect that parameters that generally de-
scribe the distribution of rainfall amounts within a pre-
cipitation system would be useful attributes for classi-
fication. Typically, the histogram, or frequency distri-
bution, of precipitation amounts within a rainfall
system is positively skewed. For example, in heavy rain
events, the majority of the precipitation area receives
light to moderate amounts of precipitation, but a sub-
stantial fraction receives heavier amounts, resulting in a
distribution that possesses a long “tail.” On the other
hand, widespread light rainfall produces a distribution
that is “humped” near a light amount of rainfall with
little or no “tail.” One way to compactly describe the
observed histogram is to fit a theoretical probability
distribution to it and use the distribution parameters as

attributes. For this work, the gamma distribution was
selected since it is positively skewed and nonnegative,
provides a reasonable representation with only two pa-
rameters (�, �), and has often been used for the analy-
sis of precipitation data (e.g., Wilks 1990). The gamma
probability density function is (Wilks 1995)

f�x; �, �� 	 �x�����1
exp��x����
�������1,

x � 0, �, � � 0, �1�

where �(�) is the standard gamma function.
The � parameter is commonly referred to as the

shape parameter since it mainly affects the shape of the
distribution function. Figure 2a shows two example
gamma probability density function curves for varying
shape parameter values. For small values of the shape
parameter (�  1), the distribution is skewed strongly
to the right with f(x) → � as x approaches zero. For
values of � � 1 the distribution function begins at the
origin and reaches a maximum value at x 	 � (� � 1).
For very large values of the shape parameter, the
gamma distribution is similar to the Gaussian distribu-
tion. The role of the parameter �, known as the scale
parameter (Fig. 2b), is mainly to affect the tail of the
distribution. For larger scale parameter values, the dis-
tribution is “pulled” to the right, representing an in-
creased frequency of larger values of x and creating a
thicker tail. For smaller values of the scale parameter,
the frequency of smaller values of x is increased, creat-
ing a thinner tail and “pushing” the distribution toward
the left. Because the shape and scale parameters of the
gamma distribution briefly describe the array of rainfall
amounts within a system, they were selected as trial
attributes in the training phase in the development of
the automated classification procedure. Since the fre-
quency distribution does not contain information on
the location of rainfall amounts, these attributes are
invariant to rainfall system translation and rotation.

Rainfall data, like most meteorological variables, are
spatially correlated. For this reason, a robust method of
parameter estimation for the theoretical distribution
that does not rely upon an assumption of independence
is desired. One such parameter estimation technique is
known as the generalized method of moments (GMM;
Hansen 1982; Hamilton 1994). GMM can be formu-
lated to allow correlation in the data to affect the pa-
rameter estimation. GMM could be considered an ex-
tension to the more familiar method of moments for
parameter estimation. In the method of moments, a set
of equations is developed to cover the number of un-
known parameters found in the theoretical distribution.
In the case of the gamma distribution, the shape and
scale parameters are the two unknowns; therefore two
equations relating these to known quantities are
needed. For example, these two equations could be de-
termined by equating the first two sample moments to
the population moments. Given this equation set, pa-
rameters obtained via the method of moments tech-
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nique would fit the observed mean and variance ex-
actly, but higher-order moments would not be taken
into account. In some cases, it may be desirable for the
parameters to provide a better fit to higher-order mo-
ments, such as the observed skewness or kurtosis. The
GMM technique allows for this by adding higher-order
moments to the equation set, resulting in a nonlinear
system of equations that can then be solved by least
squares methods. A detailed description of GMM is
provided in the appendix.

Selection of the number of moments and degree of
serial correlation in the data to use in the GMM esti-
mates was based upon previous work (Baldwin and
Lakshmivarahan 2002). The selection criteria was
based upon the quality of classification experiments us-
ing the GMM estimated shape and scale parameters as
attributes. Several different combinations of number of
moments (2 to 4) and values of lag correlation in the
data (q 	 0 to 5) were tested. Baldwin and Lakshmi-
varahan (2002) showed that the three-moment (first,
second, and third moments) GMM estimates produced
the best separation of rainfall events into general con-
vective and stratiform classes. In general, these results
found that convective events were typically associated
with relatively low values of the shape parameter and
high values of the scale parameter, while stratiform
events had relatively high values of the shape param-
eter and low values of scale. The results were not sen-
sitive to the choice of lag-correlation value; therefore
q 	 1 was chosen to account for serial correlation in the
data in this work. The results of the GMM estimates of
the gamma-shape and -scale parameters for the training
dataset are summarized in Table 1. For example, the
shape parameter for the linear convective event shown
in Fig. 1a was 0.30 and the scale parameter was 3.16.

For the event classified as stratiform shown in Fig. 1c,
the gamma-shape parameter was 0.76 and the scale pa-
rameter was 0.46.

2) SPATIAL-CONTINUITY-RELATED ATTRIBUTES

The intensity-related attributes cannot provide infor-
mation on the spatial continuity and variability of the
rainfall within an object. For instance, identical histo-
grams can be obtained from events that are randomly
unorganized or spatially continuous, since the fre-
quency distribution ignores information on the location
of rainfall amounts. To provide information on aspects
of the spatial continuity and variability within rainfall
objects, additional attributes related to the shape and
structure of the spatial patterns are required. There is a
long history of research using geostatistical tools to ex-
amine the characteristics of spatial radar/rainfall data
(e.g., Kessler 1966; Zawadzki 1973). For example,
Kessler and Russo (1963) noted how the ellipticity of
the autocorrelation was an objective measure of the
“systematic bandedness in the pattern” and how the
orientation of the major axis reflected the orientation
of the reflectivity bands. There are several measures of
spatial variability and continuity to choose from (Isaaks
and Srivastava 1989; Deutsch and Journel 1998); in this
work two-dimensional plots of the autocorrelation,
known as the correlogram, are used. The correlogram
displays the correlation between all possible pairs of
data values separated by a given lag vector, plotted as a
function of lag in both the x and y directions.

For each event in the precipitation dataset, a corre-
logram is computed using the Geostatistical Software
Library (GSLIB), a freely available package of geo-
statistical algorithms (Deutsch and Journel 1998). In-
spection of these plots in the training dataset revealed

FIG. 2. Plots of the gamma probability density function for (a) � 	 0.9, � 	 1.0 (solid) and � 	 2.3, � 	 1.0
(dashed), and (b) � 	 0.9, � 	 1.0 (solid) and � 	 0.9, � 	 3.0 (dashed).
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that linear rainfall patterns were associated with ellip-
tical correlation contours (Fig. 3a), while cellular and
stratiform precipitation patterns produced circular cor-
relation contours (Figs. 3b and 3c). Therefore, one
might expect that summary measures of the correlation
contour ellipticity would provide useful attributes for
the automated classification system.

The area and eccentricity of various contour values in
each correlogram from the training dataset were ap-
proximated and used as trial attributes in the training
phase of the classification procedure development. Us-
ing image processing techniques, a correlation contour
was considered an object. All contiguous grid points
with correlation greater than the contour value that
also include the origin were given the same object label
using a connected component labeling algorithm
(Klette and Zamperoni 1996). Next, the edge of this
connected region was found using a binary edge detec-
tion algorithm (Davies 1997). These processes equated
to locating the specified contour surrounding the origin
on the correlogram. Contours related to secondary
maxima (centered away from the origin) were not ana-
lyzed by this procedure. Once this was established, the
largest distance from the origin to this edge was found,
and this distance was assumed to be the length of the
semimajor axis (a) of the contour object. The shortest
distance from the origin to the edge was found next,
and this was assumed to be the length of the semiminor
axis (b). Note that these will not necessarily be orthogo-
nal. The ratio of the semimajor and semiminor axes
(a/b) was used as an approximate measure of the ec-
centricity of the contour. For a circular contour, this
ratio will be equal to 1.0; the ratio will increase as the
contour becomes more elongated. The product of the
two axis lengths (ab) was also used as an approximate
measure of the area covered by the contour. These at-
tributes are also invariant to rainfall system translation
and rotation. The results of this analysis of the training

dataset are summarized in Table 1 for the 0.6 correla-
tion contour. For example, the eccentricity parameter
for the 0.6 correlation contour for the linear convective
event shown in Fig. 1a was 5.06 and the area parameter
was 126.5. For the event classified as cellular shown in
Fig. 1b, the eccentricity parameter for the same contour
was 1.58 and the area parameter was 6.3. These results
show that the cases classified as linear tended to have
higher eccentricity parameters than those classified as
cellular or stratiform.

e. Cluster analysis

In this work, experimental classification was per-
formed using a hierarchical cluster analysis algorithm,
specifically Ward’s (1963) method. Ward’s method is an
agglomerative clustering technique, where clusters are
grouped together to include increasing numbers of ob-
jects in a stepwise fashion. At the lowest level of the
clustering hierarchy, each cluster contains a single ob-
ject. Larger clusters are formed by merging the two
clusters that produce the smallest increase in the
within-cluster variance. This merger step is repeated
until a single cluster containing all objects is created.
Ward’s method has been found to produce satisfactory
results for meteorological data in previous research
(Alhamed et al. 2002).

Hierarchical cluster analysis provides information on
the relationship between objects and clusters in the
dataset, which is typically represented by a tree dia-
gram or dendrogram. A hypothetical example is pro-
vided in Fig. 4. In this case, the y axis indicates decreas-
ing levels of similarity, and “branches” on the dendro-
gram indicate the level of similarity where objects are
grouped into clusters. Using cluster analysis for classi-
fication requires several subjective decisions: choice of
cluster analysis algorithm, number of clusters, etc. Ide-
ally, objects will be grouped into clusters at a high level
of similarity, and a relatively small number of clusters

FIG. 3. Correlogram plots corresponding to rainfall case (a) 6, (b) 30, and (c) 41 of the training dataset. Contour interval is 0.2.
Lags indicated are numbers of 4-km grid boxes from the original analysis (see Fig. 1).
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will ultimately be grouped at a low level of similarity.
On a dendrogram, this ideal clustering tree might look
something like the hypothetical one found in Fig. 4. An
experienced analyst can examine the dendrogram and
determine a “cut level,” or a degree of similarity where
the tree can be cut, forming a discrete number of clus-
ters, each containing a number of objects. Returning to
the hypothetical example (see Fig. 4), the ideal cut level
is somewhere along the “long branches” of the tree,
where the number of clusters remains constant across a
relatively wide range of similarity values. This produces
clusters that contain objects that appear similar to other
objects within a cluster, but different from objects
found in other clusters. In this example, there is an
object that does not appear to belong to any of the
other groups. This object is less similar to any of the
other clusters than the clusters are to each other. This
type of object is typically called an outlier and is often
considered unclassifiable (Doswell 1991). Of course,
this is an idealized example and results using real data
can differ greatly from the ideal.

For every cluster analysis classification experiment in
this work, the choice of the number of clusters was
made using the following criteria. The dendrograms
were cut to form four to five clusters containing the
majority of objects in the training dataset; no more than
six outlier events were allowed. The criteria were cho-
sen based upon examination of initial results that
showed that more than three clusters were required in
order to maintain the stratiform events in a unique clus-
ter. Since outliers could not be classified, the number of
outliers was limited to maintain a relatively high num-
ber of classifiable events. Every attempt was made to
cut each dendrogram at a point where there was sub-
stantial separation between the intracluster and inter-
cluster variation. To use the cluster analysis results as a
classification tool, each cluster was considered a sepa-

rate class of objects. The definition of each class was
determined by the highest percentage of cases detected
from the expert classification for that particular cluster.
Since there were more than three clusters selected on
each dendrogram, more than one cluster could have the
same class definition (linear, cellular, stratiform). The
percentage of objects that were correctly classified by
their membership in the dominant expert class was used
as the metric for determining the performance of the
experimental classification.

f. Experimental classification results

Using the four attributes developed in section 2d
(shape and scale parameters of the gamma distribution
and eccentricity and area of the 0.6 correlogram con-
tour), classification experiments using hierarchical clus-
ter analysis were performed to determine what combi-
nation of attributes produced the best classification re-
sults. The question of whether or not to standardize the
attributes prior to cluster analysis was investigated by
testing the raw attributes, normalizing each attribute
vector to produce zero mean and unit variance, and
standardizing each attribute by dividing by its maxi-
mum value. For each of these transformations, all pos-
sible combinations of two, three, and four attributes
were tested. The results of these 33 experiments involv-
ing different combinations of attributes and standard-
ization (Fig. 5) demonstrate that the 0.6 correlogram
contour eccentricity (a/b) and the gamma-scale param-
eter (�) were the attributes with the most discriminat-
ing power. The best results were obtained when these
attributes were used in combination. When additional
attributes were added, results degrade slightly. When
only one of these were used in combination with other
attributes, results were also degraded. Standardization
of these attributes had little impact upon the classifica-
tion results, since the ranges of the attribute values
were quite similar (typically 0–10). Therefore, the
gamma-scale parameter and correlogram eccentricity
measures from four contours (correlation 	 0.2, 0.4,
0.6, and 0.8) were tested for their effectiveness.

Figure 6 shows cluster analysis results using the
gamma-scale parameter and correlogram eccentricity
values for the 0.2, 0.4, 0.6, and 0.8 contours as attri-
butes. A cut was made on the dendrogram separating
the objects into five main clusters with six outliers.
While the cut level is subjective, this figure clearly
shows that the attributes used to describe these objects
allow a cluster analysis algorithm to produce a group of
stratiform objects (cluster 1), two groups of mainly cel-
lular objects (clusters 2 and 3) and two groups of mainly
linear objects (clusters 4 and 5). The first cluster was
unanimously populated with all 11 stratiform events.
The distinguishing feature of this stratiform cluster
mean was a low value of the gamma-scale parameter.
The second cluster was dominated by nine cellular
cases, with one linear case included. The third cluster
was also cellular dominant, with six cases. These cellu-

FIG. 4. Hypothetical hierarchical clustering dendrogram, indi-
cating ideal clustering. Ideally, the dissimilarity between objects
within each cluster will be relatively small, while the dissimilarities
between each cluster will be relatively large. An ideal cut level,
indicated by the dashed line, can be made in the gap separating
the major within-cluster and between-cluster variances. This re-
sults in three main clusters, indicated by ovals surrounding the
objects within each cluster, and one outlier (object 1).
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lar clusters had relatively low mean values of correlo-
gram contour eccentricity, indicating a lower degree of
linear organization. The fourth cluster contains five lin-
ear cases, and the fifth cluster was split between seven
linear cases and three cellular events. Clusters 4 and 5
were considered linear and had relatively high mean
values of correlogram contour eccentricity, indicating a
high degree of elongation. Validating these clusters, at
the convective/nonconvective level of classification hi-
erarchy, there were no incorrectly classified events, re-
sulting in 100% correct classification. At the more re-
fined linear/cellular/stratiform level of classification the
clusters correctly placed 38 of 42 cases into the domi-
nant class, or 90.5% correct. The classification using

these five attributes successfully separated the cellular,
linear, and stratiform events with over a 90% accuracy
rate. This level of success demonstrates that useful at-
tributes for an automated rainfall pattern classification
system were discovered. This result was used as the
basis for the automated classification procedure, which
will be described in the next section.

3. Testing phase

The training phase in the process of developing an
automated classification procedure discovered a set of
morphological characteristics that were used by a clus-
ter analysis algorithm to classify rainfall systems in a

FIG. 5. Percent correct results for 33 experiments in the (a) two-class and (b) three-class
cases. Results using raw attributes are in gray, attributes normalized to zero mean and unit
variance are dark gray, and attributes standardized by their maximum are in white. The
combination of attributes used in each experiment is indicated below each bar on the x axis.
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manner consistent with an expert classification. The
next phase of the development process involves estab-
lishing the procedures for identifying and rules for clas-
sifying rainfall systems in an automated fashion. Rain-
fall systems from 2002 were identified and analyzed so
that statistical characteristics could be extracted. The
parameters of the gamma distribution were fit to the
histogram of rainfall amounts for each object using the
generalized method of moments. A correlogram was
computed for each object as well. Only the rainfall val-
ues contained within each unique object were included
in the calculation. In other words, the rainfall from a
neighboring rainfall system did not affect the correlo-
gram for a given system. Correlation contours sur-
rounding the origin on the correlogram were analyzed
using several image processing routines described pre-
viously, and characteristics of those contours were ex-
tracted. Rainfall systems were classified by their simi-
larity to classes previously defined by the cluster analy-
sis classification experiments. To validate this
automated classification procedure, results were com-
pared to an expert classification of an independent test-
ing dataset.

a. Automated object identification procedure

As discussed in section 2a, the rainfall objects in the
training dataset were selected by hand. This method

cannot be used in a completely automated classification
procedure. Therefore, an automated rainfall object
identification procedure, first introduced by Baldwin
and Lakshmivarahan (2003), was developed in order to
analyze rainfall events beyond the training dataset in
this work. A simple threshold (0.05 mm) was used to
convert each rainfall image into a binary image. A con-
nected component labeling algorithm (Klette and
Zamperoni 1996) was applied to this binary image to
locate individual objects within the full image and iden-
tify them with a separate label. This algorithm labels
pixels that are connected to other pixels with the same
label. As in the training dataset, the areal extent of each
object was increased by an integer number of pixels in
each direction such that the object’s area increased by
as close to 15% as possible. In addition, it is not unusual
to find small gaps between nearby regions of measur-
able rain. Therefore, the definition of connected pixels
was expanded so that pixels that were within five pixels
(�20 km) of one another were considered connected,
and therefore given the same label value.

This algorithm will be illustrated via an example. In
Fig. 7a, a subset of the U.S. rainfall analysis domain is
shown for a case from July 2002. Here, a fairly large
contiguous area of rainfall covers most of southern
Minnesota. There are other smaller areas of rainfall
over North and South Dakota, and a few pixels of scat-

FIG. 6. Dendrogram produced by Ward’s method with training dataset using the scale
parameter from the gamma distribution and eccentricity of the 0.2, 0.4, 0.6, and 0.8 correlo-
gram contours as attributes. The expert classification of each object is indicated by symbols,
linear events are diamonds, cellular events are circles, and stratiform events are squares.
Dashed line indicates cut level for this classification experiment.
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tered light rain appear in Wisconsin just east of the
main heavy rainfall region. Figure 7b displays the final
result of this process. There are five separate objects
shown in this domain, since only a portion of object 5 in
the figure is located within this domain; the four objects
that are completely illustrated in this figure will be ana-
lyzed in more detail. The Minnesota rainfall has be-
come a single object (object 1); the small region of
intense rainfall in central South Dakota has also be-
come a single object (object 2). The rainfall in North
Dakota has been identified as two separated objects;
object 3 contains the heavier rain plus the scattered
light rain located adjacent and to the north, and object
4 is a small region of scattered light rain in eastern
North Dakota.

b. Automated classification procedure

The automated classification procedure places previ-
ously unknown objects into one of five classes (two
cellular classes, two linear classes, and one stratiform
class), determined by the best cluster analysis results
involving the training dataset discussed in section 2.
Each of these classes was defined by the mean of the
attribute vectors for the members of the five main clus-
ters shown in Fig. 6. The mean attribute vectors for
these clusters are provided in Table 2. Given an object
for classification, the raw values of five attributes

(gamma-scale parameter; eccentricity of 0.2, 0.4, 0.6,
and 0.8 correlogram contours) were compared to these
cluster means. The Euclidean distances between the
object and each of the five cluster means were com-
puted. The object was placed into the class represented
by the nearest-neighbor cluster in terms of the smallest
Euclidean distance.

For example, results of the automated classification
procedure for the four rainfall objects represented in
Fig. 7b are provided (attributes for these objects are
listed in Table 3). In this example, the automated clas-
sification procedure classified the large contiguous re-
gion of rainfall over Minnesota (object 1) as cellular.
The heavier rain within this object is not situated along
a single axis, leading to low values of correlogram ec-
centricity. In terms of Euclidean distance, this object is
closest to class 3, one of the cellular classes. Similarly,
the scattered area of rainfall located in North Dakota
(object 3) was also classified as cellular by the auto-
mated procedure. The heavier rain in object 3 was con-
tained in two nearly circular blobs in the center of the
object, resulting in relatively low eccentricity values
and placement in class 3 (cellular). On the other hand,
the smaller object in South Dakota (object 2) was clas-
sified as linear by the automated procedure. The heavi-
er rain in object 2 was considerably elongated, leading
to relatively high values of eccentricity (particularly for
the 0.2 and 0.4 correlation contours). This object was

FIG. 7. Steps of the rainfall object identification process. (a) One-hour rainfall (mm) valid 2300 UTC 28 Jul
2002, with 5-mm contour interval. (b) Rainfall object labeling.

TABLE 2. Cluster mean attribute vectors, from five clusters denoted in Fig. 6.

Identification Gamma scale
Eccentricity
0.2 contour

Eccentricity
0.4 contour

Eccentricity
0.6 contour

Eccentricity
0.8 contour

Cluster 1 Stratiform 0.75 2.72 1.91 1.61 1.76
Cluster 2 Cellular 2.82 2.72 2.39 1.90 2.07
Cluster 3 Cellular 5.62 1.97 2.10 2.31 1.79
Cluster 4 Linear 3.56 6.36 8.08 3.66 3.09
Cluster 5 Linear 2.63 5.28 4.03 2.89 2.80
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closest to class 5, one of the two linear classes. Finally,
the small region of light rain in eastern North Dakota
(object 4) was considered stratiform by the automated
procedure. Object 4 contained only light rain, which
resulted in a low value of gamma-scale parameter and
placement in class 1, the stratiform class.

c. Analysis of 2002 data

Each hourly stage IV analysis from 2002 was pro-
cessed using the automated rainfall system identifica-
tion and classification procedures described in the pre-
vious sections. Out of a possible 8760 h over the course
of the year, 8679 h, or 99.1% of the hours in the year,
were included in the dataset that was obtained from
NCEP. In total, 799 014 objects (rainfall systems), or an
average of 92 objects per hour, were identified by the
automated system. The distribution of objects as a func-
tion of their size (number of pixels) is shown in Fig. 8.
The histogram (see Fig. 8) clearly shows that the ma-
jority of objects are relatively small in size. By approxi-
mating the length scales of mesoscale phenomena sug-
gested by Orlanski (1975), the objects can be grouped

into three size-related categories, small (meso-�) ob-
jects of size 150 pixels (approximately 50 � 50 km2) or
less, medium-sized (meso-�) objects greater than 150
pixels and less than or equal to 2000 pixels (�200 � 200
km2), and large (meso-�) objects of size greater than
2000 pixels. For instance, in the 2002 data there were
524 224 small objects (65.6% of the total, an average of
60 h�1), 242 914 medium-sized (30.4%, average 28 h�1)
objects, and 31 876 large (4%, 3.7 h�1) objects. In terms
of areal coverage, the large objects were responsible for
73% of the precipitation area, medium objects 23%,
and small objects 4% of the total areal coverage for
2002. In terms of total precipitation volume, the large
objects represented nearly 87% of the total precipita-
tion, medium objects 12%, and small objects produced
only 1% of the total precipitation. Although the large
objects only represented a small fraction of the total
number of objects, they produced the majority of pre-
cipitation amount and areal coverage during 2002. For
reference, Fig. 7b provides examples of typical objects
in each size regime, a large object over Minnesota (ob-
ject 1: 173 380 km2), medium-sized objects in North
Dakota (object 3: 26 084 km2) and South Dakota (ob-
ject 2: 6237 km2), and a small object in eastern North
Dakota (object 4: 635 km2).

d. Testing dataset

To test the automated classification procedure, a ran-
dom sample of objects from the 2002 data was selected.
Since the 2002 data are dominated by objects of small
size, one would expect a sample taken from the entire
population to consist mostly of small-sized objects. Ex-
amination of the attributes associated with the small
objects found these to be quite consistent, character-
ized by eccentricity values nearly equal to one and very
small values of the gamma-scale parameter. Medium-
sized objects also showed consistent characteristics, al-
though not to the same extent as the small objects.
These objects were dominated by small values of the
scale parameter, and a large fraction had eccentricity
equal to one as well. The vast majority of the small- and
medium-sized objects were classified as stratiform be-
cause of the low values of gamma-scale and correlo-
gram eccentricity. This finding seems counterintuitive,
since one would expect a significant fraction of meso-�-
and meso-�-scale systems to be convective in nature.
Cursory examination of a small number of small-sized
events showed them to be likely associated with noise,

TABLE 3. A sample of attributes extracted from the four objects found in Fig. 7b.

Label Gamma scale
Eccentricity
0.2 contour

Eccentricity
0.4 contour

Eccentricity
0.6 contour

Eccentricity
0.8 contour

Object 1 6.95 1.43 1.42 1.50 1.58
Object 2 4.67 6.32 4.47 1.00 1.00
Object 3 5.05 2.85 3.16 2.00 1.00
Object 4 0.06 1.00 1.00 1.00 1.00

FIG. 8. Distribution of 2002 rainfall objects by size (x 106 km2).
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anomalous propagation, or ground clutter. Given the
large number of events to consider, further analysis is
necessary to determine the reasons for this counterin-
tuitive result. However, it is likely that alternate meth-
ods of parameter estimation and characterization are
required for objects that contain a relatively small num-
ber of pixels. Further refinement of the classification
procedure will also be necessary in order to properly
classify the smaller-scale rainfall systems.

The training dataset that the automated classification
system was built upon consisted entirely of large objects
(smallest object had just under 3250 pixels). Large-
sized objects from the 2002 data had attributes whose
values varied across a wide range, including time of day,
time of year, and location. As mentioned previously,
the large objects represented the majority of precipita-
tion amount and areal coverage during 2002. Therefore,
the testing data sample was taken entirely from the
large-sized object regime.

Because it was not feasible to perform expert classi-
fication on the entire dataset, which consisted of 31 876
large-sized objects, a sample of 100 objects was ran-
domly selected to create an evaluation, or testing
dataset. To confirm that this sample was representative
of the entire population, the distributions of various
attributes associated with these objects were compared
to the summary statistics associated with the large ob-
jects (see Figs. 9 and 10). As shown in Figs. 9a and 9b,
but for an anomalous peak in the early morning, the
diurnal cycle of the validation sample was quite similar
to the overall large object distribution, generally de-
creasing during the evening and overnight hours, then
increasing to a peak in the late afternoon. The distri-
bution of objects from the random sample during the
course of the year (see Figs. 9c and 9d) was also rep-
resentative of the entire population, with relatively high
frequency in the warm season and low frequency in the
cool season. The test sample was also well distributed
across the United States (see Figs. 9e and 9f) with
somewhat dense clusters of sample objects in South
Florida and the Pacific Northwest in the same vicinity
of maximum density in the overall distribution. The
distribution of the validation sample objects in attribute
space (see Fig. 10) also appeared to be representative
of the entire 2002 population of large objects, with scale
values ranging from 0.1 to 10, shape values ranging
from 0.1 to 1, and eccentricity values ranging from 1 to
10. However, one object in the testing sample did ap-
pear to be an outlier, with a very small gamma-scale
value, large shape parameter, and eccentricity slightly
greater than one. These results showed that this sample
was representative of the population and exhibited an
interesting range of attribute values. The automated
classification procedure was tested by comparing the
results of an expert classification of this 100-object
sample to those from the automated classification sys-
tem.

e. Testing results

Each object from the evaluation sample was classi-
fied into five classes by the automated classification
procedure. Class 1 was a stratiform class, classes 2 and
3 were both cellular, and classes 4 and 5 were linear.
Figure 11a shows the results of this classification. The
most popular individual class was the stratiform class,
where 39% of the objects were classified. However,
combining classes 2 and 3 (cellular) showed that 46% of
the objects were considered cellular by the automated
system. Linear events were the most rare: combining
classes 4 and 5 resulted in 15% of the objects in the
validation sample. Comparing this with the automated
classification results for all of the large objects in the
2002 data (see Fig. 11b) further confirmed that the test-
ing dataset was representative of the population (43%
stratiform, 39% cellular, and 18% linear).

The expert classification of the evaluation sample
separated the rainfall systems into three classes: linear,
cellular, and stratiform. These results were compared
with the automated classification results, where classes
2 and 3 were combined into a cellular class and classes
4 and 5 were combined into a linear class. Overall, 89%
of the objects were correctly classified into the parent
convective/nonconvective classes (two-class case), and
85% of the objects were correctly classified in the
three-class case (stratiform, linear, cellular).

Further examination of these results showed that the
majority of incorrectly classified cases were considered
nonconvective by the expert classification and classified
as convective by the automated procedure. In fact,
seven of the cases were classified as linear by the au-
tomated classification and stratiform in the expert clas-
sification. Closer examination of these cases showed
that high values of correlogram eccentricity tended to
place them into a linear class even though the value of
the gamma-scale parameter was small, indicating a lack
of heavy rainfall. An example of an error of this type is
provided by case 3 of the sample, an object located over
northern Michigan at 0500 UTC 16 May 2002 (see Fig.
12). The rainfall associated with this object is generally
light and widespread, which lead to the expert strati-
form classification and a value of the gamma-scale pa-
rameter of 0.7. At the same time, the rainfall is some-
what organized along a line, represented by the rela-
tively high eccentricity values, in particular, a/b 	 4.6
for the 0.4 correlogram contour. In terms of Euclidean
distance to the five cluster means, this object was clos-
est to the linear cluster 5 due mainly to the high values
of eccentricity. Through detailed analysis of other er-
rors of this type, further improvements to the classifi-
cation procedure will likely be realized in future work.

4. Conclusions

The overall goal of this work was to develop a com-
pletely automated rainfall system classification proce-
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dure. To accomplish this task, the discovery of a set of
attributes that allow for characterization of morpho-
logical aspects of rainfall patterns was required. This
task was accomplished via a relatively small training
dataset, comparing the results of various cluster analy-

sis experiments with an expert classification. These ex-
periments involved reducing the dimension of the data
by analyzing the “bulk” global distribution of rainfall
values across each object, using the histogram of rain-
fall values representing each object. The gamma distri-

FIG. 9. Comparison of characteristics of (left column) evaluation sample and (right column) large objects in 2002
dataset. (a), (b) Distribution of objects as a function of time of day. (c), (d) Distribution of objects by month. (e),
(f) Distribution of object center of mass locations.
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bution was selected as a compact model of the observed
histograms. The shape and scale parameters of the
gamma distribution were fit to each histogram using the
generalized method of moments technique. Informa-
tion regarding the degree of elongation of the rainfall
systems was obtained via geostatistical measures. The
correlogram was selected for analysis because it is in-
dependent of the magnitude of the rainfall values. By
estimating the area and eccentricity of various correla-
tion contours in the correlogram, useful information on
the degree of linear organization within each rainfall
system was obtained. The cluster analysis using the
gamma-scale parameter along with the eccentricity of
four correlogram contours as attributes successfully
separated the training dataset into linear, cellular, and
stratiform classes. These results were used as the basis
for an automated classification procedure.

The classification system was based upon a nearest-
neighbor approach, using the best results from the pre-
vious cluster analysis experiments using the training
dataset. An independent evaluation of the procedure

was required. To obtain a representative, random
sample of the rainfall object population, analysis of the
characteristics of rainfall systems across an entire year
was performed. Rainfall objects (or systems) were de-
fined as contiguous regions of precipitation. Summary
statistics of attributes from this year were examined,
and a random sample of interesting objects was pulled
from the 2002 data. The distribution of the random
sample was compared with the summary statistics in
order to confirm that this validation dataset was repre-
sentative of the population. The results of an expert
classification were compared to those from the auto-
mated classification procedure and showed that the au-
tomated classification accurately placed 85% of the ob-
jects into correct linear, cellular, and stratiform classes,
and 89% of objects into their correct parent convective/
nonconvective class. Therefore, an independent test of
the performance of this classification system was ob-
tained.

While the automated rainfall system classification
procedure developed in this work produced satisfactory

FIG. 10. Comparison of characteristics of (left column) evaluation sample and (right column) large objects in 2002
dataset. (a), (b) Object distribution density in a gamma-shape, gamma-scale (alpha, beta) plane. (c), (d) Object
distribution density in gamma-scale, 0.4 correlogram contour eccentricity plane.

APRIL 2005 B A L D W I N E T A L . 859

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 10/07/23 11:08 AM UTC



results, further refinement of the methods may result in
a variety of improvements. Image segmentation rou-
tines, such as those proposed by Peak and Tag (1994)
and Lakshmanan (2001) may prove to be beneficial in
locating rainfall systems within the full analysis domain.
These may be especially useful in subdividing synoptic-
scale, contiguous areas of rainfall, which are currently
defined to be a single rainfall system. One might wish to
separate a convective line associated with a strong sur-
face cold front from one that is connected to warm
frontal bands within the stratiform region of a cyclone.
The inclusion of other sources of rainfall-related data,

such as lightning, radar reflectivity, satellite radiances,
etc., may also help to improve the classification.

Further refinements in the classification hierarchy
are also desirable. For example, the degree to which the
attributes used in this work will divide the linear class
into more refined classes [such as symmetric/
asymmetric as in Houze et al. (1990) or leading strati-
form, parallel stratiform, and trailing stratiform as in
Parker and Johnson (2000)] should be determined. If
the attributes currently in use do not have the power to
further discriminate among desired subclasses, addi-
tional attributes that have this ability must be discov-
ered.

There are many potential applications for the auto-
mated rainfall system classification procedure devel-
oped in this work. For example, verification, predict-
ability, and climatological studies may benefit from
such a classification system. Since a multiyear archive
of stage IV analyses is available, interannual variability
of rainfall events could be studied. Through the use of
operational gridded analyses of environmental condi-
tions [such as those produced by the Rapid Update
Cycle at NCEP (Benjamin et al. 1994)], the relationship
between system types and the thermodynamic and en-
vironment flow conditions associated with them could
be studied further (e.g., Perica and Foufoula-Georgiou
1996). Severe weather reports could also be associated
with the various classes of collocated rainfall systems,
possibly leading to improved forecasts of hazardous
weather.
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FIG. 12. Object 3 from the testing dataset, 1-h accumulated
rainfall (mm) valid 0500 UTC 16 May 2002. Only rainfall amounts
contained within the object are plotted.

FIG. 11. Distribution of objects by the automated classification system. (a) Results from the evaluation sample;
(b) results for all large objects from 2002. Class 1 is the stratiform class, classes 2 and 3 are cellular, and classes 4
and 5 are linear.
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APPENDIX

Generalized Method of Moments

The GMM (Hansen 1982; Hamilton 1994) can be
considered an extension to the classical method of mo-
ments. In the method of moments, the parameters of
the theoretical distribution are found by developing a
system of equations that equate the population mo-
ments with their sample counterparts. If there are K
unknown parameters in the theoretical distribution, K
such equations are necessary. The resulting parameters
will produce a theoretical distribution that fits those K
moments exactly. However, rather than fitting K mo-
ments exactly, it may be desirable for the parameters to
fit K � L moments as closely as possible. For example,
if two parameters are unknown, one might desire to
produce parameter estimates that provide the best fit to
the first, second, third, and fourth moments of the
sample. A nonlinear vector function g(�, r) can be pro-
duced representing the differences between the sample
moments (�̂n) and the population moments, using the
gamma distribution, for example,

g��, r� ��
��̂1 � ���

��̂2 � ��2�� � 1��

��̂3 � ��3��2 � 3� � 2��

��̂4 � ��4��3 � 6�2 � 11� � 6��
� .

�A1�

Here, � 	 [� �] is the vector containing the param-
eters of the gamma distribution, r represents the vector
of length N containing the sample rainfall, and �̂n 	
�1/N��N

t	1(rt)
n is the nth sample moment. One can cre-

ate an objective scalar function �(�) 	 g(�, r)T Ag(�,
r), which is the weighted sum of squared errors of the
estimates of the parameters, where A is a symmetric
positive-definite weighting matrix that represents the

relative importance of fitting each of the moments. In
this work, the parameter vector � that minimizes this
function was found iteratively using the bounded trun-
cated-Newton method (Nash 1984).

GMM can allow correlation in the data to affect the
parameter estimation. The optimal weighting matrix
A* is the inverse of the parameter error covariance
matrix S. If the data are serially uncorrelated, an esti-
mate of the error covariance matrix is the second mo-
ment matrix:

Ŝ 	 �1�N��
t	1

N

g��̂, rt�g��̂, rt�
T, �A2�

which is the mean outer product matrix of the errors of
the estimated parameters. Serial correlation in the data
can be taken into account by modifying the estimate of
the second-moment matrix (Newey and West 1987):

Ŝ 	 Ĝ0 � �
�	1

q

�1 � 
���q � 1����Ĝ� � Ĝ�
T�, �A3�

where

Ĝ� 	 �1�N� �
t	��1

N


g��̂, rt��
g��̂, rt����T. �A4�

Newey and West (1987) show that Eq. (A3) provides
a consistent estimate of the covariance matrix if q grows
as a fractional power of sample size (q  T1/4).

Note that in order to compute the second-moment
matrix, an estimate of the unknown parameters (�) is
needed. An iterative procedure is followed in which an
initial estimate of the parameters (�0) is obtained using
an arbitrary weighting matrix such as the identity ma-
trix A0 	 I. This estimate of � is used in Eq. (A3) to
produce an initial estimate of S, which is inverted to
produce A1. The objective function � is minimized us-
ing A1 to produce a new estimate �1, which is then used
to estimate A2. These iterations continue until conver-
gence is reached. For all cases in this work convergence
was reached in five iterations or less.
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