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ABSTRACT 

The  optimum  time  and  space  distribution of upper-air observations is considered in connection with  the  detection 
and prediction of instability lines-a mesoscale phenomenon. It is  shown that  the  optimum  spacing of observa- 
tional  stations  is  not  only a function of the scale of the  phenomena  to be detected  but of observational  and  analytical 
errors  as well. When  these errors are considered the  optimum  network  spacing  can be determined  with  regard  to 
the  dimensions of the  atmospheric  feature  requiring  detection. Because actual  data  are  lacking, inferences  concerning 
the  maximum  time  and  space  distribution of upper-air  sounding  stations  suitable for the detection of instability lines .. 

are  drawn  from  a  theoretical  atmospheric model, 

1. INTRODUCTION 

The  true dimensions of the  instability  line'  have, for 
the  most  part, escaped detection except for  its  horizontal 
dimensions at  the  earth's surface  [l]  during  the  active 
stage.  Some  theoretical estimates of the dimensions of 
the  instability line in  the  incipient  stage  can  be  inferred 
from 121. However,  the problem of detection of these 
lines by upper-air  observations is also complicated by 
their  relat,ively  short life cycle. When  one considers 
that  the  average dimensions of the  instability line are 
of the  order of 125 miles long,  moving n distance of 175 
miles in 5 hours,  it  can  be seen that  the chances of synop- 
tically  measuring  the  vertical  distribution of horizont'al 
gradients  associated  therewith  are  indeed  small. The  net- 
work spacing  within the  United  States of 220 nautical miles 
(average) and  time  spacing of 12 hours  provide  a  very low 
probability of the  detection of the  atmospheric processes 
involved in  the  production,  propagation,  and dissipation 
of such  phenomena.  On  the  other  hand,  the  time  and 
space distribution of surface  weather  reporting  stations 
provides a much  better  probability of the  detection  and 
the  prediction of the line. Unfortunately,  without a 
knowledge of the vertical  extent  and  relative  strength 
of the  dynamic processes involved in  the  production of 
intense  vertical  motion,  the  forecaster  stands  little  chance 
of gaging  correctly  the  intensity of act)ivity associated with 
the  thunderstorms. Likewise, the prediction of the 
formation  and  dissipation of this  activity is handicapped. 

Since the  prediction of such  phenomena is of economic 
importance,  and  the successful prediction is dependent 
upon initial  observations of the meteorological processes 
involved, the  purpose of tllis paper is to discuss the  upper- 

1 The  instability l i e  has been  designated by the  World  Meteorological  Organization 
as a line of incipient,  active,  or  dissipating  nonfrontal  instability  conditions. I t  is  pri- 
marily an analytical  tool  for  indicating  the  incipient  and  dissipating  stages  of  squall  line 
phenomena. 

air  observational  network  needed  to  improve  the  detection 
and  prediction of these  phenomena. 

2. OPTIMUM  NETWORK SPACING 

The  map  analysis of any  quantity derived  from  synoptic 
weather  observations is subject  to  two principal  errors. 
One  error is the  error of measurement  inherent  in  the 
observations  themselves,  and  the  other is the  truncation 
error  due  to  smoothing of the isolines of the observed 
values. The design of an observational  network  must 
t'ake  both of these  errors into  account.  The  optimum 
space  and  time  dist'ribution of observations is dependent 
upon the relation  between  the  errors of observation  and  the 
gradient of the  quantity being analyzed. If the  gradients 
involved in  the  system being analyzed  are  smaller  than  the 
gradient of errors, the analysis becomes  one of errors 
rather  than of the  system itself. 

The  optimum  spatial  distribution of radiosonde  stations 
is that distance  between  adjacent  stations which minimizes 
the  variance  about  the  true  horizontal  gradient of the 
analyzed  gradient  (true  gradient  plus  gradient of errors). 
Consider  a  situation  in which two  observation  stations  a 
distance d apart lie along  the x-axis, one a t  x=d/2  and 
the  other a t  x= -d/2.  One  error  arises  from  observa- 
tional  errors  and  the  other  from  truncation errors. Let 
El be  the  root  mean  square of the  observational  errors  and 
E2 be  the  root  mean  square of the  truncation  errors that  
arise  in  computing  the  first  derivative at  the  midpoint 
between  stations of a quantity y from  the  observations a t  
the  two  stations.  The  total  error will then  be 

E,=\iEl2+ E2'. (1) 

Let  the  root  mean  square  error of observation of y be u, 
then 

(2) 
E'=d. JZ, 
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The  truncation  error is found  by  forming  Taylor’s series 
involving y a t  d/2 and -d/2. Subtracting  the second 
from the  first series (after  dropping  terms of higher  order 
than  the  third)  and  dividing  by d gives a  finite difference 
representation of the  gradient  that differs from bylbx by 
a  third  order  term,  the  truncation  error.  The  root  mean 
square of the  truncation e,rror is  found  to  be 

The  total  error is then 

where y’ ’ = b3yf b$. 

Since it is desired that d be chosen  such that-E2 is mini- 
mized, the  first  derivative of the  root  mean  square of the 
total  error will be  made zero. 
Thus 

d E  Y”’ 
dd 

Solving for d gives the  condition  for  optimum d, 

Upon  substitution of the  finite difference form of the 
third  derivative for y”’, equation (6) is identical  to  that 
contained  in [3].  Under  certain  conditions  a  solution  can 
be found by using  the  equation  in  the  manner suggested 
in [3],  Le., as  a  first guess, the  measuring  interval is set  to 
d and  the  values of the  quantity  are selected  from  the 
observational  record.  From  this  an  approximate  third 
derivative is computed  and  with u given,  a new d is found. 
The process is repeated  until  the successively derived 
values of d converge. However,  for  the  very  short  waves 
of interest  here,  the  values  diverge;  moreover,  for  short 
measuring  intervals  the  evaluation of the  third  derivative 
by use of the  approximate difference form becomes diffi- 
cult  to  achieve  with  accuracy.  Under  such  conditions  it 
is necessary  to  utilize  a  more  rigorous  procedure for deter- 
mination of the  third  derivative  in  seeking  a  solution to  
equation (6). 

Given  knowledge of the  variation  in  time or space of 
any  continuous  function it is possible to  approximate  the 
time or space  variation  mathematically.  The  mathe- 
matical expression that describes the  variation  can  then 
be  differentiated  three  times  to  obtain  the  third  derivative, 
the  value of which can  then  be  determined precisely for 
any  point  along  the  curve.  This  value  can  then be substi- 
tuted  into  equation (6) and  with u given, d is found.  This 
is then  the d required  within  the  limits of observational 
error  to give the  optimum finit’e difference representation 

of the  gradient of a  quantity y having  a  complexity  de- 
scribed by  the  third  derivative  around  the  point of appli- 
cation.  A  greater  spacing of stations would result  in  an 
analysis  such that  the  real  feature would be  lost  through 
smoothing of the isopleths.  Any  spacing less than  the 
optimum would tend  to become an analysis of observa- 
tional  errors.  An  inspection of equation (6) reveals that 
it has  no  practical  application when y”‘ is zero or infinite 
since the  optimum  spacing would then  be  infinite or zero. 
respectively. 

3. COMPUTATION OF NETWORK SPACING 

As indicated  above  a knowledge of not  only  the  dimen- 
sions of the  atmospheric  features  but  a knowledge of 
observational  errors is required  to  determine  the  optimum 
observational  network.  Unfortunately,  there is little 
published  information  concerning  the  standard  error of 
upper-air  observations. Data secured  as  a  result of radio- 
sonde  compatibility  tests [4] indicate  that  an  error of 
f 50 feet at  the 500-mb. level is reasonable.  A  later  study 
[ 5 ]  using an  indirect  method  estimated  this  error  to  be 
about 15 meters or approximately 49 feet.  A  value of 
50 feet will be used subsequently for u in  evaluating 
equation (6). 

The  detection  and  prediction of instability  lines  are 
dependent,  in  the  main,  upon  a knowledge of the  time 
change of the existing thermal  instability.  The  prediction 
of the  intensities of weather  phenomena  associated  with 
these lines is also dependent  upon  the  time  rate of change 
of the  vertical  thermal  instability.  Consequently,  it 
appears desirable to  specify  the  upper-air  properties of the 
instability  line  in  terms of a  parameter  that  involves  the 
horizontal  as well as  the  vertical  thermal  structure. Since 
thickness  permits  us  to  interpret  the  horizontal  and 
vertical  temperature  structure it can be utilized.  The 
significance of thickness  with  respect  to cyclonic develop- 
ment is discussed in 161, and  its  relation  to  instability  line 
formation is indicated in [2].  Little is known about  the 
true dimensions of thickness  and  thickness  gradients  with 
respect  to  the  instability  line;  however,  theoretical compu- 
tations [2] can  provide  the basis for a beginning. 

Data from figure 7 of [2] ,  reproduced  here  as figure 1, 
were used to develop table I ,  a  tabulation of the  thickness 
computed for the  layer 1,000-500 mb. for points 6, 7, 8, 9, 
and 10 of that  study, located  a  distance of 60 n.  mi. apart. 
These  data were utilized to  construct  the  vertical  section 
shown in figure 2. It was  found that  this  curve is approx- 
imated closely by  the  equation 

TABLE 1.-Thickness  values  for  layer 1,000-500 mb.  through  a  space 
section  normal to a n  instability  line  computed  from  the  theoretical 
data of jigure 1. Points 6 ,  7, 8, 9,  and 10 are located 60 n. mi. apart. 

Location 6 7 8 9 10 
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FIGURE 1.-Thickness field associated  with  a  theoretically  computed 
instability line. Computations were made a t  numbered  grid 
points  which are 60 n. mi. apart.  (After 121.) 
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FIGURE 2.--Solid curve is  vertical  profile of thickness  along  sections 
6-10 of figure 1. Dashed  curve is plot of equation (7) given in 
the text. 

where  y0=18,660 feet, Al=22.5 feet, L1=120 n.  mi., 
Az=40 feet,  and L2=360 n.  mi. Differentiation of equa- 
t,ion (7) three  times gives 

y”’ was evaluated  from  equation (8) at x=90 n.  mi. 
(location of inflection point)  and x=130 n.  mi.  (trough 
location)  and  its  average  value was  computed  for  the 
interval x=50 to x=130 n.  mi.  Substitution of these 
values of y”’ into  equation (6) gave  the  optimum  spacing 
of stations.  The  results  are given in  table 2. 

I t  can  be  seen  from  equations (6) and (8) and  table 2 
that  the  optimum  spacing of stations  varies according 
to  the choice of 10cat~ion at which the  third  derivative 
is computed. For this  reason it appears  that  the  spacing 
computed  for  the  average  value y”’ average  for  the por- 
tion of the  curve  most significant to  the  analysis problem 
at  hand should  be considered the  optimum. In  the 
case at  hand  a  spacing of stations 93 miles apart would 
assure  the  detection of the  feature when both  observational 
and  analytical  errors  are considered. The corresponding 
optimum  time  interval for observations,  on  the  assump- 
tion of a  translation of the  pattern  at a  speed of 30 m.p.h., 
is 3.1 hours. 

At  this  writing knowledge of the dimensions of incipient 
instability  lines is so meager there is  no  way of knowing 
the  deviation of the  above  data  from  that averaged  from 
a  large  number of cases. It is clearly evident,  however, 
that est,ablishment of such  an  average or mean dimension 
is dependent  on  a  greater  time  and  space  density of 
stations. 

Preliminary analyses of data secured from  a few air- 
craft  traverses  through  instability lines during  the incip- 
ient  stage  indicate  that  important waves may exist 
whose ratio of wave length  to  amplitude is smaller than 
that used in  the  theoretical  computation above. The 
significance of the  theoretical  study is that operational 
experience indicates that a  feature of that size or larger 
is probably  in  existewe in about one-half the cases a  short 
time before the  development of thunderstorms along the 
instability  line. 

TABLE 2.-The optimum  spacing ( d )  of stations  corresponding  to 

point (x=150 n. mi.), and  its average over the  interval  x=50, 130 
values of I y”’I at  the  inflection  point (x=QO n. mi.) and  trough 

n. mi. 

Inflection point ..-....  .-.. ~ ...- ~ ..........__._.... 3.44 x 10-3 
Trough  point ... . _. . ~. . .~... .~ ~... .._.. ..~ _...... I 1;: 1 1.45 X 10-3  1 93.8 

70.4 

Average _.._....._...... ~-~ ...._..._....__._.... ~. 50-130 1.53 X IO-a 92.2 
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4. CONCLUSIONS 

The  above  considerations  indicate  clearly that  the 
optimum  time  and  space  density of observations is a 
function  not  only of the  observational  errors  but  a  funct,ion 
of the  truncation  error  as well. Obviously,  then,  the 
time and  space  density of upper-air  observations  and 
analyses thereof must  be  such  as  to  insure  the  capability 
of detecting  the  smallest  atmospheric  feature  important 
to  the  particular  forecast  problem.  When  these  crrors 
are  considered the  optimum  network  spacing  then  can  be 
determined  with  regard  to  the dimensions of the  atmos- 
pheric features  requiring  detection. 

From  a  research  or  forecasting  standpoint, it is obvious 
that a  greater  density of upper-air  sounding  stations is a 
necessity if we are  to  determine  with  certainty  the  dynar~lic 
processes that result  in  the  formatlion,  propagation,  and 
dissipation of the  instability  line.  Although a network 
as  dense  as that suggested  here by  the  computation of 
optimum  spacing  for  incipient  instability  lines  rnay ncvpr 
become economically  feasible  for routine  forecasting, i t  
is also obvious that  the existing  network is much  too  sparse 
to  provide  the  basis  for  any  appreciable  irnprovernent  in 
the forecast.  This is because  the  extent  to which the 
forecaster is able to decrease  his  forecast  errors is limited 
by  the  extent  to which t.he observational  network  ap- 
proaches an  optimum design with  respect t,o the scale of 
the  phenomena which  he must predict’. 

A recent  study by Gleeson [7] suggests  a ~net~hod for 
computing  the  probabilities of observing an  atmospheric 
feature of a given  size.  Using this  approach  and t’he 
dimensions of the  theoretically  derived  instability  line [a], 

it appears that  the  detection of the existence of such a 
feature  by  the existing time  and  space  distribution of 
radiosonde  stations does not exceed a  probability of 10 
percent.  Doubling  the  number of stations would increase 
the  probability of detection by  about 20 percent. 

The foregoing  considerations  indicate  clearly that a 
network of rawinsonde  stations a t  least  double  the  existing 
number,  and  taking  observations a t  6-hourly  intervals, 
supplemented by winds  aloft stations, would result  in  a 
significant improvement  in  the  detection of the  phenomena 
in  the  incipient  stage,  and  thus  the  prediction of the 
active  stage. 
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