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1. INTRODUCTION 
 
     The NOAA/NWS Storm Prediction Center (SPC) 
issues Fire Weather Outlooks for the contiguous United 
States (CONUS) for Days 1-8 (defined as 12-12 UTC).  
These Fire Weather Outlooks assess where pre-existing 
fuel conditions combined with forecast weather 
conditions will result in a significant threat for the spread 
of wildfires (i.e., strong winds concurrent with low relative 
humidity at the surface).  Operational numerical weather 
prediction models play a vital role in informing these Fire 
Weather Outlooks, yet the performance of the models is 
rarely assessed for fire weather forecasting capabilities. 
This study aims to quantify and document the 
performance characteristics of operational models for fire 
weather forecasting. 

The data and methodology used in this study can be 
found in the following section. Results of fire weather 
forecasting performance in 2021 from coarse and high-
resolution operational models are presented in the third 
section, followed by a summary and conclusions.  

 
2. DATA AND METHODOLOGY 
 
     To assess the performance of operational models for 
fire weather forecasting, a relatively simple, 
straightforward approach was employed.  The 21-hour 
forecast of the Fosberg Fire Weather Index (FFWI; 
Fosberg 1978) from 0000-UTC model runs (i.e., valid at 
2100 UTC) during 2021 were verified across the CONUS.  
The focus on an afternoon valid time (i.e., 2100 UTC) was 
to highlight biases in surface relative humidity (RH) and 
wind speed that primarily arise from diurnal planetary 
boundary layer (PBL) mixing. The coarse models 
examined in this study include the North American 
Mesoscale (NAM) model, the Global Forecast System 
(GFS) model, and the European Center for Medium-
range Weather Forecasting (ECMWF) model while the 
high-resolution models examined were the High-
Resolution Rapid Refresh (HRRR), the HiRes Window 
(HRW) Advanced Research WRF (ARW), the HRW 
NSSL, the HRW Finite-Volume Cubed (FV3; available 
after 11 May), and the NAM CONUS Nest. The SPC 
RAP-based mesoanalysis (Bothwell et al. 2002) was 
utilized as the observational dataset to calculate the grid-
based verification statistics on a common 40-km grid.  
The statistics were accumulated over the CONUS for 
each day of 2021, including root-mean-squared error 
(RMSE), mean error (ME), and 2x2 contingency table 
statistics [probability of detection (POD), false-alarm ratio 
(FAR), critical success index (CSI), and bias; Wilks 2006].  
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The FFWI, which is a non-linear combination of 
meteorological data that results in a linear relationship 
between meteorological conditions and wildfire behavior, 
was used a proxy in this study for fire weather 
forecasting.  While the FFWI is not a widely used 
parameter, it does have the desired characteristic of 
combining wind speed and RH into a single variable for 
verification and is commonly examined by SPC 
forecasters for identifying critical fire weather areas.  The 
FFWI is defined below: 

 
FFWI = [𝜂𝜂√(1+U2)]/3.002 

 
Where U is the surface wind speed and 𝜂𝜂 is the moisture 
damping coefficient that is a function of surface 
temperature and RH.  The FFWI is scaled so that a value 
of 100 occurs with RH=0% and U=30 mph.  See the graph 
of FFWI as a function of wind speed and RH in Fig. 1, and 
note the more rapid increase of FFWI values with 
increasing wind speed as opposed to decreasing RH. 
Please note that the FFWI only accounts for 
meteorological conditions and does not consider fuel 
conditions. 
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3.  RESULTS 
 

Forecasts of the FFWI from various operational 0000 
UTC-initialized models were verified at 2100 UTC (i.e., 
21-h forecast) for each day of 2021 to assess the 
performance for fire weather forecasting.  There were 
three primary components to this objective verification of 
1) coarse and 2) high-resolution models:  a) RMSE and 
ME across the CONUS, where the 2-m temperature (T) 
exceeded 50F, b) RMSE and ME across the CONUS, 
where the 2-m T exceeded 50F and the FFWI exceeded 
40 to include only areas with fire weather concerns, and 
c) contingency-table statistics via a performance diagram 
(Roebber 2009) for FFWI values of 40, 50, and 60, where 
the 2-m T exceeded 50F. 
 
3.1 Objective Verification of Coarse Models 
 

When verifying the FFWI for all grid points across the 
CONUS with 2-m T >50F, the ECMWF stands out as 
having the lowest (i.e., best) RMSE and best ME (near 0) 
while the GFS has the highest (i.e. worst) RMSE and ME 
(Fig. 2).  However, if the verification is restricted to 
locations where the analyzed FFWI values are above 40 
(i.e., where fire weather concerns exist), the results look 
much different (Fig. 3).  The first thing to notice is that the 
errors are larger and vary more on a daily basis, owing to 
the smaller sample size. When only examining 
operationally meaningful values of the FFWI, the GFS 
has the lowest (i.e., best) RMS and best ME (closest to 
0) while the ECMWF now has the worst RMSE and ME 
(Fig. 3).  These objective verification statistics, when 
limited to areas with FFWI values exceeding 40, agree 
with subjective assessments of model usefulness by SPC 
forecasters when issuing Fire Weather Outlooks. 
 

 

 

 

   For another statistical perspective, the performance 
diagram highlights different model attributes (Fig. 4).  
Despite very similar overall CSI values for all three 
models, they have very different performance 
characteristics (Fig. 4).  The ECMWF has a low bias (0.5-
0.7), POD (~0.4), and FAR while the GFS has a high bias 
(1.5-2.0), POD (~0.7), and FAR for fire weather 
forecasting.  The performance attributes of the NAM fall 
in between the ECMWF and GFS with a tendency toward 
a low bias and low POD.  It is worth noting that for high-
impact weather forecasting, like fire-weather forecasting, 
POD is a very important forecast attribute even if it comes 
with a high bias.  Thus, given the similar CSI values 
among the GFS, NAM, and ECMWF, SPC forecasters 
find the GFS more useful for fire-weather forecasting 
given the much higher POD, followed by the NAM and 
then ECMWF in terms of usefulness for fire-weather 
forecasting. 
 

 

 
 



3.2 Objective Verification of High-Resolution Models 
 
For all grid points across the CONUS with 2-m T >50F, 

the NAM Nest stands out as having the lowest (i.e., best) 
RMSE and best ME (near 0) of the FFWI while the NSSL 
has the highest (i.e. worst) RMSE and ME (Fig. 5).  It is 
interesting to note that the high-resolution models 
actually have larger RMSE and ME than the coarse 
models for this analysis (cf. Figs. 2 and 5).  Again, the 
results look much different if the verification is restricted 
to where fire weather concerns may exist (i.e., FFWI 
values above 40).  First of all, the errors are slightly larger 
overall and vary more on a daily basis with this restriction, 
but are now smaller than those of the coarse models (cf. 
Figs. 3 and 6). When only examining operationally 
meaningful values of the FFWI, the HRRR has the lowest 
(i.e., best) RMS and best ME (closest to 0) while the NAM 
Nest now has the worst RMSE and ME (Fig. 6).  This is 
consistent with the coarse-model results, where models 
with a low bias for fire weather conditions have the lowest 
errors when considering all grid points. Objective results 
from limiting the verification to areas with FFWI values 
exceeding 40 agree better with subjective assessments 
by SPC forecasters than the results for all grid points. 
 
 

 

 
 
   The performance diagram highlights some interesting 
differences among the operational high-resolution 
models (Fig. 7).  The NAM Nest stands out as the model 
with the lowest bias (0.7-0.9), POD (~0.5), and FAR.  
There are three models (FV3, NSSL, and HRRR) 
clustered in the upper-left portion of the diagram with 
similar characteristics: high bias (>2.0) and high POD 
(0.7-0.8).  Of these three, however, the HRRR has 
notably lower FAR.  Lastly, the ARW has average 
characteristics that fall between the HRRR and NAM 
Nest.    Even though the NAM Nest, ARW and HRRR 
have similar overall CSI values (perhaps even slightly 
higher for the NAM Nest), the importance of POD for high-
impact events for fire weather forecasting suggests that 

the HRRR is the most useful operational high-resolution 
model for forecasting fire weather conditions, followed by 
the ARW and NAM Nest. The NSSL and FV3 lag behind 
the other three models in terms of overall usefulness 
owing to the higher bias and FAR.  These performance 
characteristics and overall rankings are generally 
consistent with subjective perspectives of SPC 
forecasters who use these models on a daily basis for 
generating Fire Weather Outlooks. 
 
 

 

 
 

 

 
 
 
 



While the focus of this study was on the performance 
and characteristics of deterministic operational models, 
the High-Resolution Ensemble Forecast (HREF; Roberts 
et al. 2019) system was examined to quantify the value 
of ensembles for fire-weather forecasting.  The HREF is 
a 10-member time-lagged ensemble consisting of the five 
runs examined herein along with their respective time-
lagged members.  The mean of the FFWI from all ten 
HREF members was verified alongside the individual 
members.  The HREF results in improved performance 
(i.e., higher CSI) for fire weather forecasting over any of 
the individual members (Fig. 8).  Not surprisingly, the 
characteristics (POD, FAR, bias) of the HREF lie in the 
middle of the characteristics of the individual HREF 
members with the most similarity to the deterministic 
ARW. 
 
 

 

 
  
4.  SUMMARY AND CONCLUSIONS 
 

The performance of coarse and high-resolution 0000-
UTC operational models was examined for fire weather 
forecasting by verifying the Fosberg Fire Weather Index 
(FFWI) valid at 2100 UTC for all days during 2021. One 
important takeaway is that the RMSE and ME for fire-
weather forecasting are very sensitive to whether all grid 
points are examined or whether only grid points with 
operationally meaningful FFWI values (i.e. FFWI>40) are 
examined.  Examining and verifying only the meaningful 
areas are better aligned with subjective impressions of 
SPC forecasters regarding the characteristics and utility 
of the models for fire-weather forecasting. 

Regarding the coarse operational models examined, 
the GFS is better for fire-weather forecasting given its 
lower RMSE and ME and higher POD than the NAM and 
ECMWF for areas where fire weather concerns may 
exist.  The ECMWF has an especially notable low bias 
and negative ME for fire weather conditions.  These 
biases and characteristics can be seen in the historic 
wildfire event on 15 December 2021 across portions of 
the Central and Southern Plains (Fig. 9). 

Regarding the high-resolution operational models 
examined, the HRRR, FV3, and NSSL all have a high 
bias and POD in forecasting fire weather conditions, but, 
of these, the HRRR has lower RMSE, ME, and FAR.  The 
NAM Nest has a low bias and POD for fire weather 
conditions while the ARW has characteristics that fall 
between the HRRR and NAM Nest.  Considering the 
importance of POD for fire weather forecasting, the 
HRRR is the best deterministic operational model for 
forecasting fire weather conditions followed by the ARW, 
NAM Nest, NSSL, and FV3 in order of usefulness to 
operational forecasters.  Overall, the HREF performs 
better on average than any individual member for fire-
weather forecasting, indicating the utility and usefulness 
of an ensemble for fire-weather forecasting.  Many of 
these characteristics and biases can be seen in the 
forecasts for the historic wildfire event on 15 December 
2021 across portions of the Central and Southern Plains 
(Fig. 10). 
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 Figure 9. Forecasts of the FFWI for the GFS, NAM, ECMWF, and analysis (from left to right) valid at 2100 UTC on 15 December 
2021 for the historic wildfire event across portions of the Central and Southern Plains.  

Figure 10. Forecasts of the FFWI for the NSSL (top left), ARW (top middle), FV3 (top right), HRRR (bottom left), NAM Nest (bottom 
middle), and HREF (bottom right) with the analysis (far right) valid at 2100 UTC on 15 December 2021 for the historic wildfire event 
across portions of the Central and Southern Plains. 


