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ABSTRACT 
 

Objective forecast verification was conducted for the second year in near real-time during the 
2013 Hazardous Weather Testbed (HWT) Spring Forecasting Experiment (2013 SFE). As part of the 
daily activities, experimental probabilistic forecasts for severe thunderstorms were created.   These 
forecasts were then evaluated the next day via webpages with preliminary local storm reports (LSR) 
serving as the verification dataset.  The idea was to further explore the value of incorporating 
verification metrics by comparing various scores to subjective evaluations from the participants.  In 
addition to the forecast verification metrics examined in the 2012 SFE, the relative skill score was 
introduced since it was designed with a baseline reference capable of measuring skill of rare-event 
forecasts (i.e. severe thunderstorms).  Results suggested that the relative skill scores were generally 
better on days with more severe weather reports.  Further, the participants generated skillful forecasts 
at the lower probability thresholds, as the relative skill scores were predominately positive in 
accordance with favorable subjective ratings.     

_______________ 
 

1. Introduction 
 
 The Storm Prediction Center (SPC) and 
National Severe Storms Laboratory (NSSL) jointly 
conduct the Spring Forecasting Experiment (SFE) 
each spring in the Hazardous Weather Testbed 
(HWT) at the National Weather Center in Norman, 
OK.  Historical descriptions of the annual SFE 
dating back to 2000 can be found in both Kain et al. 

(2003) and Clark et al. (2012).  As in prior years, 
both model and forecast evaluations remained as an 
activity during the 2013 SFE.  Nevertheless, for 
many of those years, a statistical assessment often 
waited until after the participants had left and the 
program had concluded (e.g., Kain et al. 2008).   
Starting with the 2012 SFE, a near real-time 
objective evaluation component was added to 
complement the traditional, subjective verification 
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performed daily (Melick et al. 2012).   Given the 
promising results from this initial exploration, use of 
forecast verification metrics resumed and was 
expanded in the 2013 SFE. 
 Next-day evaluations of severe weather 
forecasts produced by the participants occurred 
once again during the five-week period of the 2013 
SFE (May 6 – June 7).   The current work addresses 
the performance of these experimental probabilistic 
forecasts in predicting the occurrence of damaging 
winds, hail, and tornadoes associated with severe 
thunderstorms.   An emphasis is placed on testing 
the utility of several forecast verification metrics by 
relating the objective results to the subjective 
impressions provided by the participants. This 
objective is similar to that of Melick et al. (2012), 
except their work dealt with verification of high-
resolution model forecasts of simulated reflectivity 
during the 2012 SFE.  The expectation is that these 
types of approaches will continue in some fashion 
for many years in the HWT, especially considering 
that SPC has already commenced internal testing of 
objective verification for probabilistic ensemble 
guidance and SPC operational convective outlooks.  

 
2. Data and Methodology 
 
a. Data 
 
 The skill of experimental forecasts issued in 
the HWT was investigated during the course of the 
2013 SFE.  SFE participants from two separate 
teams (named: East and West) produced identical 
probabilistic products consisting of total severe 
(wind gusts ≥ 50 kt, hail ≥ 1” in diameter, and any 
tornado) forecasts that were valid within 25 miles 
[~40-km] of a point, as defined in SPC operational 
convective outlooks.  More precisely, both teams 
used the same probability contours in the SPC Day 
2 convective outlook product (5, 15, 30, 45, and 
60%), but also had the option of including extra 
contour lines (every 5%) for localized maxima.  
The teams were also permitted to delineate an area 
for ≥10% probability of significant severe storms 
(i.e. hail ≥ 2” in diameter, wind gusts ≥ 65 kt).  
While it would be interesting in the future to 
examine significant severe events, computations of 
forecast verification metrics were specifically 
restricted here to just any type of severe weather occurrence.  

All severe weather forecasts considered in 
the evaluation covered the 16Z-12Z forecast period 

for 24 weekdays from May 6th – June 7th (with no 
activities on Memorial Day).   Additional forecasts 
of higher temporal resolution (3-hr; 18-21, 21-00, 
and 00-03Z) were also created but were not 
examined further since the sample size of verifying 
observations would be much smaller compared to 
the 20-hr, full-period forecast.  Verification was 
obtained by utilizing preliminary local storm reports 
(LSR) received from the National Weather Service 
forecast offices through the valid forecast period 
(just after 12Z).    These next-day evaluations were 
also restricted to a mesoscale “area of interest” for 
possible severe convection.  Table 1 lists the surface 
weather stations that served as daily movable center-
points along with the tally of verifying LSRs.   
 
Table 1.  Description of the surface weather stations selected for each 
of the 24 days as center-points during 2013 SFE.  All of the daily 
evaluations were restricted to a mesoscale “area of interest” for possible 
severe convection.  This small domain was movable to locations in the 
eastern and central United States.  Also, the 16Z-12Z verifying tallies of 
LSRs over the restricted domain are displayed as well.  Consult Fig. 1 
for an example plot showing the spatial extent. 
   

   
b.  Methodology: Verification Metrics 
 
1) RELIABILITY DIAGRAM 
 
 The reliability diagram (Wilks 2006) was utilized 
to illustrate the performance of probability forecasts 
for severe weather events by determining the 

Center-point Local Storm Reports 
Date[YYMMDD] Station Name, State (3-Char ID) 16Z-12Z Verification 

130506 Greensboro, NC (GSO) 12 
130507 Gage, OK (GAG) 27 
130508 Gage, OK (GAG) 130 
130509 Corsicana, TX (CRS) 100 
130510 College Station, TX (CLL) 41 
130513 Lewistown, MT (LWT) 12 
130514 Volk/Camp Douglas, WI (VOK) 16 
130515 Austin, TX (AUS) 40 
130516 North Platte, NE (LBF) 12 
130517 Rapid City, SD (RAP) 45 
130520 Muskogee, OK (MKO) 189 
130521 Mount Pleasant, TX (OSA) 121 
130522 Johnstown, PA (JST) 127 
130523 Snyder/Winston, TX (SNK) 90 
130524 Hill City, KS (HLC) 40 
130528 Whiteman AFB, MO (SZL) 89 
130529 Enid/Vance AFB, OK (END) 160 
130530 Grove, OK (GMJ) 141 
130531 Joplin, MO (JLN) 150 
130603 Medicine Lodge, KS (P28) 34 
130604 Enid/Vance AFB, OK (END) 42 
130605 Graham Municipal, TX (RPH) 111 
130606 Stephenville, TX (SEP) 34 
130607 Cannon AFB/Clovis, NM (CVS) 15 
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observed relative frequency as a function of forecast 
probability.  This allowed for a quick visual means to 
understand properties of the probabilistic forecasts 
relative to “perfect reliability”, a 1:1 diagonal line 
shown on the reliability diagram.  For this 
application, the probability values from the 
experimental team forecasts and “practically 
perfect” hindcasts (Brooks et al. 1998; see 
description below) were grouped into six bins (0%, 
5% ,15% , 30%, 45%, 60%) by rounding down to 
the nearest bin.  Then, counts of grid points with 
one or more severe reports were evaluated for each 
probability bin and summed over all of the days.  
Similarly, sample sizes were also computed for the 
total number of forecast grid points that 
corresponded to each of the forecast probability 
bins.  As a result, the ratio of these two results for 
each probability bin produced the relative frequency 
for the observations (i.e., the ordinate in the 
reliability diagram). 

 
2) CONTINGENCY TABLE METRICS 

   
    Defining severe storm events for both the 
forecasts and observations was necessary in order to 
accomplish the objective evaluation.   These events 
were determined by first placing the datasets on a 
40-km grid (NCEP 212; 
http://www.nco.ncep.noaa.gov/pmb/docs/on388/
tableb.html), similar to verification procedures used 
at SPC (e.g., Bright and Wandishin 2006).  In the 
case of the experimental forecasts produced by the 
participants, grid point values of the probabilities 
were obtained from the drawn contours by a graph-
to-grid routine in GEMPAK (GEneral 
Meteorological PAcKage; desJardins et al., 1991).  
More specifically, the technique produced non-
continuous forecast probabilities, meaning that grid 
point values were constant between the contour 
lines and set to the lower probability contour (e.g., 
entire area between 5 and 15% contour lines is set to 
5%).  In the case of bounds for the minimum 
(maximum), anything less (greater) than 5% (60%) 
was set to 0% (60%).  After the conversion in 
formats, binary (yes/no) event grids could be 
specified from the probabilistic information by 
specifying various thresholds to define the forecast 
area.  As for the verification, if ≥ 1 severe weather 
report occurred within a 40-km radius of influence 
(ROI) of the grid box, it was recorded as a severe 
event.   

  A direct grid-point-to-grid-point comparison 
between the forecasts and observations can result in 
only four possible outcomes from the discrete 
predictands (i.e., yes/no).  Thus, a 2x2 contingency 
table (Wilks 2006) was developed for each probability 
threshold to tally all possible combinations.   After 
counts of hits, misses, false alarms, and correct nulls 
were obtained, standard verification metrics were 
computed (e.g., Critical Success Index [CSI]) for all of 
the fixed SPC thresholds (5, 15, 30, 45, 60%), as well 
as the probability for which the maximum CSI value 
occurred.   For the statistical analysis, a mask was also 
applied to include only grid points over the 
contiguous United States within the small “area of 
interest”. 
 

3) PRACTICALLY PERFECT HINDCASTS 

 
 Brooks et al. (1998) presented a technique to 
produce a meaningful baseline to relate to severe 
weather forecasts using the collection of LSRs 
recorded at SPC.  Following their approach, 
“practically perfect” [PP] hindcasts were created by 
applying a two-dimensional Gaussian smoother 
(sigma=120-km) to the occurrence of one or more 
severe reports within 25 miles of a 40-km x 40-km 
grid box.  In addition, another grid of analyzed, 
significant severe probabilities was created using one or 
more significant severe reports at a grid point.  The PP 
method produced a probabilistic field which was 
considered to be consistent with what a forecaster 
would produce given prior (perfect) knowledge of the 
observations (Brooks et al. 1998).  As with the 
experimental products issued by both teams, 
comparable scores from the 2x2 contingency table 
were determined by treating PP like a forecast and 
specifying identical probability thresholds (i.e. 5, 15, 
30, 45, and 60%).  Consequently, this allowed for 
reference in measuring the performance of severe 
weather forecasts from day to day, which was 
particularly beneficial since attaining high scores from 
traditional verification metrics can often be 
challenging.   
 

4) RELATIVE SKILL SCORE 
  
 The notion of a relative skill score in verifying 
rare event forecasts was described by Hitchens et al. 
(2013).  Their work utilized PP hindcasts as a 
reference to evaluate SPC convective outlook slight 
risk areas from 1973 to 2011.  In its formulation, the 
relative skill score (RelSkill) is given by:    

http://www.nco.ncep.noaa.gov/pmb/docs/on388/tableb.html
http://www.nco.ncep.noaa.gov/pmb/docs/on388/tableb.html
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(1),  
 

where ForecastCSI represents the value of CSI from 

the forecast being verified, MaxPPCSI  is the 

maximum (upper bound) value of CSI from PP, and 

MinPPCSI  is the minimum (lower bound) value of 

CSI from PP.    Although the choice of performance 
measure is arbitrary in computing relative skill, usage 
of CSI as the metric was retained in the current 
investigation.   In order to determine the upper and 
lower bounds in equation (1), binary severe weather 
events were created for every PP probability 
threshold at an interval of one percent, similar to 
that in Hitchens et al. (2013).   For the case 

of MaxPPCSI , the maximum probability threshold 

was reached once the increase in CSI had terminated 
(going up from 1%; see Fig. 4 in Hitchens et al. 
(2013) for an example).  On the other hand, the 

MinPPCSI  was the theoretical CSI value when 

approaching 0% based on a downward extrapolation 
of CSI from one percent using the slope between 
the one and two percent threshold values (i.e., 

)CSI(CSICSICSI 1%2%1%MinPP  ).   

The range in values from RelSkill can vary 

between negative (i.e., when MinPPForecast CSICSI  ) to 

greater than one (i.e., when CSIForecast > CSIMaxPP).  
From the analysis work performed by Hitchens et al. 
(2013), little to no RelSkill was noted in SPC 
convective outlook slight risk areas until the mid-
1990s, after which a steady increase occurred.  One 
of the main differences from their study was the 
testing of several thresholds with the probabilistic 
experimental forecasts.           
 

5) FRACTIONS SKILL SCORE 
 
 The verification metrics discussed thus far have 
been constrained to evaluating whether or not a 
severe weather event was predicted and whether or 
not a severe event occurred.  Instead of setting a 
threshold and converting the probabilistic forecast 
into a binary one, the PP hindcast could serve as the 
verifying dataset.  In this case, the probabilities from 
both the experimental forecasts and PP could be 
directly compared by calculating the fractions skill 
score (FSS; Schwartz et al. 2010), which is a variation 
on the brier skill score.  The range on FSS is from 0 
to 1, with the highest score indicating a perfect 
forecast and the lowest score revealing no skill 

without any overlap in non-zero probabilities.  Similar 
to CSI and the relative skill score, computations of 
FSS were performed for the 24 days of the five-week 
period of the 2013 SFE. 
 

3. Results 
 

a.  2013 SFE Website 
 
 One of the objectives in conducting the objective 
verification during the 2013 SFE was to provide a 
means for the HWT participants to quickly evaluate 
the experimental severe weather forecasts.   This was 
accomplished by incorporating the ability to showcase 
various forecast verification metrics the next day 
from the 2013 SFE website 
(http://hwt.nssl.noaa.gov/Spring_2013/).   Time- 
matched images of forecasts and observations were 
created and displayed on web pages along with the 
computed statistics.  An example snapshot 
highlighting probabilistic forecast comparisons from 
both the East and West teams are presented in Fig. 1.  
A related survey question sought the subjective 
impressions of participants regarding the 
experimental severe weather forecasts. 
 In addition, the SFE participants were able to 
retrieve a summary of the objective results for all five 
weeks in a tabular format.  The table creation (Fig. 2) 
was driven on a separate web page by choosing the 
forecast time period and then selecting the 
verification metric and probability threshold from 
drop-down menus.  Another available feature was the 
accumulated statistic, which was offered through 
dynamic calculation in PHP.   
 
b. Reliability Diagram 
 
 The reliability diagram provided one method to 
get insight into aspects of the probabilistic forecast 
system.  Figure 3 revealed the observed frequency of 
severe weather reports in each of the six forecast 
probability bins for the experimental forecasts and 
PP hindcasts.  The forecasts were nearly reliable for 
probabilities up to and including the 15% bin where 
substantial sample sizes (on the order of 10,000 grid 
points) were present.   Both the East team and PP 
tended to slightly under-predict at 30% with a more 
substantial under-prediction for all forecasts at 45% 
(Fig. 3).  With respect to the highest probability bin 
(60%), results for the West team indicated reliability 
with a slight over-prediction for the East team.   
Still, limited confidence should be placed in the 

 
CSICSI

CSICSI
RelSkill

MinPPMaxPP

MinPPForecast
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findings at the 45%, and particularly, the 60% 
probability bins where the total number of forecast 
grid points had substantially diminished to an order 
of a few hundred or less (Fig. 3).  Nonetheless, the 
overall impression was that the experimental 
probabilistic forecasts were fairly reliable over the 
relatively short five-week period, even more reliable 
than the PP hindcasts, especially at higher 
probabilities. 

 

 
 
Figure 1. Sample spatial plots from 2013 SFE website illustrating the 
ability to display verification metric scores for experimental severe 
weather forecasts.  The probabilistic forecasts for 16Z-12Z are valid 
starting on May 31st, 2013 for a mesoscale “area of interest” centered on 
Joplin, MO.  For the top row, the far-left panel shows the probability 
contours from the West team, the middle represents those from the 
East team, and the far-right matches to the PP hindcast.  In addition, a 
10% or greater hatched area for significant severe storms is also 
predicted/analyzed, with the verifying observations from the LSRs 
overlaid on top of each of the plots.   Beneath each of the experimental 
forecasts, the corresponding maximum threshold Critical Success Index 
(CSI), Fractions Skill Score (FSS), and the relative skill score (RS) 
obtained from the maximum threshold CSI are displayed as well.  The 
upper and lower bounds of CSI from PP to calculate relative skill are 
given below the PP hindcast.   Finally, the bottom row shows an overlay 
of severe thunderstorm/tornado watches and warnings issued by the 
NWS.  The figure is annotated to highlight some of the details relevant 
to the date, type of forecast, forecast time period, forecast verification 
metrics, and other functionality.  See text for more details.   

 
 
Figure 2.  Sample composite of several tables created from 2013 SFE 
website which summarizes the multiple day (5/6/2013 – 6/7/2013)    
verification metrics for the experimental severe weather forecasts (and 
PP hindcast in some cases).   The table is created from a variety of user 
options: forecast time period, forecast verification metric, and 
probability threshold (CSI at 5% being the default).   Skill score results 
are binned according to the day of the SFE forecast with the rows 
separating the East team, West team, and PP results.   Finally, 
accumulated statistics for a few appropriate forecast verification metrics 
are offered through dynamic calculation in PHP.   The three tables 
displayed in this example are valid for the 16-12Z time period and show 
the CSI values at the 5% threshold (top), RS values at the 5% threshold 
(middle), and RS values from the maximum threshold CSI (bottom).  
Again, annotation is used to emphasize some options and functionality.   

 
 
c. Accumulated Results: Contingency Table Verification 
  
 Figure 4 presents the accumulated, multiple day 
results for contingency table forecast verification 
metrics using the performance diagram (Roebber 
2009).  The performance diagram (Roebber 2009) is 
appealing as it is able to summarize information on 
probability of detection [POD], false alarm ratio 
[FAR], frequency of hits [FOH], bias, and CSI from 
all forecasts in one illustration.  Specifically, the 
overall statistics are shown at all fixed probability 
thresholds and broken up by each of the 16Z-12Z 
experimental team forecasts as well as the PP 
hindcast.       
 The first noticeable feature in Fig. 4 was that the 
2013 SFE contingency table verification metric scores 
were higher at all probability thresholds for the PP 
hindcast compared to the experimental team forecasts 
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for severe weather.  This was concurrent with the fact 
that most of the probability thresholds tended to 
occur more often with PP, as revealed in Fig. 4.  
More importantly, though, the synopsis for the entire 
SFE was that most scores were favorable or 
maximized (i.e. CSI) at the 15% probability level for 
both of the experimental team forecasts and at the 
30% probability level for the PP hindcast.  At these 
optimal thresholds, CSI values reached slightly under 
0.3 for the forecasts produced by the participants and 
PP slightly exceeded 0.45 for CSI (Fig. 4).   
 For the other fixed probability thresholds, a very 
large POD was evident in Fig. 4 at the 5% level 
(greater than 0.9) since the 5% forecast areas often 
captured a significant majority of the observed severe 
weather reports.  On the other hand, FOH (FAR) 
values started to go above (below) 0.5 at or above the 
30% probability threshold for the experimental team 
forecasts, the result of false alarms falling substantially 
relative to hits as the spatial coverage diminished.  
Finally, the score trend inconsistency from the 45% 
to 60% probability threshold (Fig. 4), especially for 
the East team, was presumably the result of a very 
small sample size of days (Fig. 5) and grid points (Fig. 
3). 
 

 
 
Figure 3.  Reliability diagram for 16-12Z probabilistic severe forecasts 
using accumulated grid point tallies over the 24 days (5/7/2012 – 
6/8/2012) of the 2013 SFE.  The inset histogram displayed below gives 
the forecast subsample sizes computed each of the forecast probability 
bins (0%, 5%, 10%, 15%, 30%, 45%, and 60%).  The y-axis on the 
histogram is a logarithmic scale so as to represent the large disparity in 
occurrences between the lower and higher probability thresholds.  The 
color code legend for the markers reveals the matching type of forecast 
(East team, West team, PP hindcast).  

 

 
 
Figure 4.  Performance diagram (Roebber 2009) showing accumulated 
multiple day results for contingency table forecast verification metrics  
of the 16-12Z forecasts from the 24 days (5/7/2012 – 6/8/2012) of the 
2013 SFE.  The color code legend reveals the matching type of forecast 
(East team, West team, PP hindcast) with the probability thresholds 
labeled next to the corresponding scores.  

 
 
d.  Daily Distribution of Maximum Threshold CSI   
 
 During the 2012 SFE, a similar evaluation of the 
experimental forecasts using calculations of CSI at the 
5% probability threshold was performed.  While this 
provided a quick means to document whether the 
event was captured by a low probability, the approach 
was incapable of diagnosing the best (or optimal) 
threshold for maximizing CSI.  Such an investigation 
was possible for the 2013 SFE, with daily 
distributions of probability threshold for maximizing 
CSI and the corresponding CSI score displayed in 
Fig. 6.   
 In order to create the histogram in Fig. 6, the 
best probability values from the East team, West 
team, and PP hindcast were rounded down to the 
nearest fixed probability threshold (e.g., 20% 
classified under 15% bin).  The frequency counts in 
Fig. 6 indicated that the highest scores were often at 
or just above the 15% probability threshold.  It is also 
interesting to note that the best results sometimes 
extended into the 30% probability threshold bin, 
especially for PP hindcasts.  Further, the maximum 
threshold CSI values were generally in the 0.2 to 0.4 
range for the experimental team forecasts with a shift 
upward to around 0.6 for PP hindcasts (Fig. 6).  Thus, 
a more complete representation of CSI (or any 
contingency table metric) was available by examining 
multiple probability thresholds than looking at just 
one.   
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Figure 5.  Pie chart showing the daily frequency for the maximum 
probability threshold for the 16-12Z forecasts from the 24 days 
(5/7/2012 – 6/8/2012) of the 2013 SFE.  The top, middle, and bottom 
panels present the outcomes from the East team, West team, and PP 
hindcast, respectively.  The continuous probabilities from PP were 
sorted into 5% increment bins which match those possible from the two 
teams.  For the data labels, the count of occurrence is given next to each 
probability bin value in the range from 5% to 60%.   

   
 

 
 
Figure 6.  Histogram plot displaying maximum threshold CSI for the 
16-12Z probabilistic severe forecasts from the 24 days during the 2013 
SFE.   East team, West team, and PP hindcast frequency counts for the 
best threshold for maximizing CSI and the resulting maximum CSI are 
given to the left and right side of the figure, respectively.  The 
probability and CSI score bins are constructed as described in the text.    

 
 

e.  Daily Distribution of RelSkill   
 
 A majority of the investigation thus far has been 
concentrated on just using contingency table 
verification metrics without understanding any 
context of the difficulty of the experimental forecasts.   
For this purpose, box-and-whisker plots for the daily 
RelSkill at each of the fixed probability thresholds and 
the threshold for which CSI maximized were 
produced (Fig. 7).   In looking at the RelSkill of the 
forecasts issued during the SFE, both teams exhibited 
positive RelSkill for almost all of the days at both the 
5% and 15% probability thresholds and more than 
half of the days at the 30% probability threshold.  
The RelSkill was rarely positive at the 45% and 60% 
thresholds, which is not unexpected given that these 
higher probability areas are not drawn to capture all 
of the reports (i.e., discriminate between occurrence 
and non-occurrence).  Correspondingly, Fig. 7 
showed the magnitudes for the median RelSkill with 
increasing thresholds increased from approximately 
0.2 to 0.4, decreased to about 0.2, before trending 
below zero at the two highest probability thresholds.  
While most of the distributions were small and 
concentrated, the 30% threshold had the broadest 
distribution of RelSkill.  As for the RelSkill calculated 
at the threshold for which CSI maximized, all of the 
results were similarly good as at the 15% probability 
threshold, but shifted slightly higher at all percentiles 
(Fig. 7).   
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 It is worth noting that the results shown were 
conditional on how Equation (1) was formulated and 
would subsequently be sensitive to the strengths and 
weaknesses associated with the selection of CSI.   For 
instance, the strong association between the two 
variables is illustrated in Fig. 8, in which the scatter 
plot reveals a high, positive correlation (R~0.8-0.9).  
Thus, this measure of skill will suffer when there are 
few hits in the forecast relative to the number of false 
alarms and misses.  It would be interesting in the 
future to calculate RelSkill by applying a different 
verification metric (e.g., Bias, POD, etc.) as a 
comparison to the results obtained using CSI.   
 

 
 
Figure 7.  Box-and-whisker plots of daily RelSkill at various 
probabilistic thresholds for the 16-12Z severe weather forecasts issued 
by the East and West teams.  Starting from left to right, results are 
calculated and displayed at 5%, 15%, 30%, 45%, 60%, as well as for the 
threshold at which CSI was maximized.  The whiskers correspond to the 
10th and 90th percentile rankings from the 24 days during the 2013 SFE.  

 

 
 
Figure 8.  Scatter plot showing relationship between CSI and RelSkill 
values at the 15% probability threshold for the 16-12Z severe forecasts 
issued by the East and West teams during the 2013 SFE.  Linear trend 
lines and the coefficient of determination are included. 

 

f.  Distribution of FSS   
 
 The FSS was examined during the 2013 SFE 
because of its advantage in evaluating probabilistic 
type information in a straightforward manner.  
During the 2012 SFE, FSS had some of the highest 
scores calculated in the objective evaluation of high-
resolution guidance.  Further, these high scores were 
supported by it often being rated the most preferred 
metric by the participants (Melick et al. 2012).  
Similarly, excellent FSS values for the 2013 SFE 
experimental severe forecasts are indicated in Fig. 9.  
As such, nearly all of the daily results resided above 
0.5 for both teams with tight distributions centered 
between 0.7-0.8.  This assessment coincided with the 
observation that a substantial portion of the forecast 
probabilistic threat areas over the 24 days aligned 
themselves well with that from PP.  Still, subjective 
appraisals of FSS suggest it may not distinguish 
subtle, but important differences in forecast 
performance.   
 

 
 
Figure 9.  Box-and-whisker plots of daily FSS for the 16-12Z 
probabilistic severe weather forecasts issued by the East and West 
teams.  The whiskers correspond to the 10th and 90th percentile rankings 
from the 24 days during the 2013 SFE. 

 
 

g.  Comparison of CSI, RelSkill, and FSS   
 
 Some verification metrics (e.g., RelSkill at 30% in 
Fig. 7) analyzed in the 2013 SFE showed substantial 
variations in forecast performance while other 
measures showed less variability (e.g., FSS in Fig. 9) 
across the five weeks. In order to explore these 
differences, two case studies are offered from the 16-
12Z forecasts on June 3rd (Fig. 10) and June 4th (Fig. 
11).   The statistical analysis revealed very good FSS 
with a slight increase of about 0.1-0.2 on the later 
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date, the consequence of the severe probability 
regions issued having slightly better resemblance to 
that of PP hindcasts.  In terms of the 15% 
probability, scores from CSI (not shown) were about 
0.17-0.18 for both team forecasts on both days.  
Alternatively, the 15% RelSkill (not shown) was much 
higher on June 3rd (0.56-0.61) compared to June 4th 
(about 0.22), when there were a few more LSRs 
(Table 1).  The key distinction resides in the fact that 
the spatial coverage for the verifying reports was 
spread out more on June 3rd (compare Fig. 10 versus 
Fig. 11) which caused the upper bound from the 
baseline (i.e. PP hindcasts) to have a lower CSI (0.24 
in contrast to 0.44).  Consequently, the forecast was 
comparatively more challenging on June 3rd, and the 
teams were rewarded favorably from RelSkill even 
though the CSI values were similar on both days. 
    

 
 
Figure 10.  Same as in Fig. 1, except for the spatial plots and associated 
skill scores for June 3rd, 2013.  The surrounding webpage information 
has been eliminated in order to focus in on the details for the case study.   

 

 
 
Figure 11.  Same as in Fig. 1, except for the spatial plots and associated 
skill scores for June 4th, 2013.  The surrounding webpage information 
has been eliminated in order to focus in on the details for the case study.   

 
 
 The ability of the objective metrics to 
discriminate based on the magnitude of the severe 
weather event was also explored.  For this purpose, 
the values from each of the forecast verification 
metrics were sorted based on ranking each day by the 
number of LSRs recorded.  Subsequently, box-and-
whisker diagrams were created for 15% CSI, 15% 
RelSkill, and FSS for the bottom 12 LSR tally days as 
well as for the top 12 LSR tally days (Fig. 12).  In the 
comparison of less active severe convective days to 
more active ones, an upward shift in the statistical 
distributions was noted for all three metrics at most 
percentile thresholds.    The values for FSS exhibited 

the smallest increase, yet were substantially higher 
compared to the other two verification metrics 
regardless of the number of LSRs (compare panels in 
Fig. 12).  In terms of 15% CSI and 15% RelSkill, very 
small positive to negative scores for the 10th to 25th 
percentile were reserved only for those days with a 
minimal collection of reports.  Not surprisingly, an 
evaluation in this manner revealed the participants 
performed better in their probabilistic forecasts for 
more active severe weather days.  The large 
distribution in the RelSkill stayed nearly the same 
regardless of the amount of severe weather, which 
presumably indicates that using PP hindcasts as a 
baseline reference is attempting to make days with 
different levels of severe activity more comparable.   

 

 
 
Figure 12.  Box-and-whisker plots of daily 15% CSI, 15% RelSkill, and 
FSS for the 16-12Z probabilistic severe weather forecasts issued by the 
East and West teams.  Results for the bottom 12 (small) LSR tally days 
are presented alongside the top 12 (big) LSR tally days for comparison.  
The whiskers correspond to the 10th and 90th percentile rankings during 
the 2013 SFE.  

 
 
h.  Participant Feedback 
 
 Another goal of the research work was to 
compare the objective results to the participant 
feedback from the survey questions.   Figure 13 
present tallies gathered from the responses on 21 days 
for subjective evaluations of the experimental severe 
forecasts.    Both the East and West team forecasts 
for the 16-12Z time period were rated “Fair” to 
“Good” for more than seventy five percent of the 
forecasts.  In order to relate these assessments to that 
of the forecast verification metrics, a cursory 
examination of Fig. 12 shows that the daily scores 
were at the very least reasonably favorable a greater 
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part of the 2013 SFE.   Additionally, a follow-up 
inquiry in Fig. 14 revealed that the participants usually 
“Agreed” that the RelSkill matched their subjective 
impressions of forecast performance.   It should be 
noted, though, the sample sizes for this survey 
question were slightly smaller (e.g., 15 and 19 days) 
compared to the previous one in Fig. 13. 
 

  
Figure 13.  Participant feedback tallies gathered during 2013 SFE daily 
activity evaluation.  The results obtained from the survey question 
covered subjective evaluations of the severe weather forecasts for the 
16-12Z time period.  The wording of the question is given in italics in 
the titles and the sample size was 21 days.   
 

 
 
Figure 14.  Same as in Fig. 13 except for a survey question relevant to 
comparing the results from the relative skill score against the subjective 
evaluations of forecast performance.  The sample sizes were smaller 
compared to Fig. 13 at 19 and 15 days for the East and West teams, 
respectively. 
 
 
 
 
 

4. Summary and Conclusions 
 
 SPC conducted objective verification of 
experimental severe forecasts during the 2013 SFE 
in near real-time.  This second attempt built upon 
the success from the 2012 SFE in testing the value 
of selected verification metrics in relation to 
subjective evaluations.  Besides examining CSI and 
FSS from the prior year, the RelSkill was added to 
the suite of forecast verification metrics examined 
daily in the HWT.  In this approach, PP hindcasts 
were constructed to provide a valuable baseline to 
measure the skill of the probabilistic severe forecasts 
during the 2013 SFE.    
   The process for conducting an effective 
evaluation of the 16-12Z probabilistic forecasts 
mimicked that from the 2012 SFE.   Specifically, 
time matched spatial plots of forecasts and 
observations were displayed on webpages linked 
from the 2013 SFE website for visual comparison.  
Skill scores were also calculated for each forecast 
time period to be viewed with the appropriate 
images or to be examined via table summaries. By 
incorporating more than one forecast verification 
metric and then comparing these statistical results to 
the participant feedback, a more complete picture 
was obtained in the evaluation process. 
 One notable finding was that RelSkill provided 
unique information regarding forecast performance 
over that of traditional forecast verification metrics.   
Since RelSkill includes the PP hindcast as a baseline 
reference, some measure of the difficulty of the 
forecast is included in the metric.  The forecasts at the 
lower probability thresholds (i.e. 5% and 15% 
probability contours) nearly always had positive 
RelSkill.  As demonstrated by the case study 
comparisons, this measure of skill was sensitive to 
multiple factors, including the spatial distribution of 
LSRs.   Finally, it was noted that generally better 
statistical results occurred on days with more severe 
weather reports, something which was observed with 
both CSI and FSS as well.   
 Another conclusion was that the subjective 
evaluations during the five-week period were 
generally consistent and agreed with the statistical 
results. Participants usually rated the severe forecasts 
as “Fair” to “Good” with verification metrics being 
generally favorable, especially at the lower probability 
thresholds.  Consequently, the encouraging results of 
performing objective verification have persisted for 
the last two years in the HWT (and locally at SPC) 
and support continued efforts in future SFEs.   
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