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ABSTRACT: This study explored how forecasters can best use the two main forms of operational convection-allowing
model guidance: the High-Resolution Ensemble Forecast (HREF) system and the hourly High-Resolution Rapid Refresh
(HRRR). The former represents a wider range of possible outcomes, but the latter updates much more frequently and
incorporates newer observations. HREF and time-lagged High-Resolution Rapid Refresh (HRRR-TL) probabilistic fore-
casts of reflectivity and updraft helicity, as well as two methods of combining HREF and HRRR into hourly updating
blended guidance, were evaluated for the 2021 Spring Forecasting Experiment (SFE) period. In both objective skill and
the subjective ratings of SFE participants, the 1200 UTC HREF proved difficult to outperform over this sample of events,
even when incorporating HRRR initializations as late as 1800 UTC. It was usually better to use either of the experimental
blending techniques than to simply discard the older HREF in favor of newer HRRR solutions. The greater model diver-
sity and dispersion of solutions within the HREF is likely primarily responsible for this result. A possible bias in diurnal
convection initiation timing and coverage in the newly upgraded HRRRv4 was also investigated, including on subdomains
targeted to weakly forced diurnal initiation, and was found to have little or no systematic effect on HRRRv4’s operational
utility.

KEYWORDS: Forecast verification/skill; Mesoscale forecasting; Numerical weather prediction/forecasting; Short-range
prediction; Model evaluation/performance

1. Introduction

The High-Resolution Rapid Refresh (HRRR; Smith et al.
2008; Benjamin et al. 2016) model and the other members of
the National Centers for Environmental Prediction (NCEP)
High-Resolution Ensemble Forecast (HREF; Roberts et al.
2019) compose the primary convection-allowing model
(CAM) guidance for short-term severe weather forecasting in
the United States, including for the Storm Prediction Center
(SPC). The full membership of the HREF updates twice a
day (0000 and 1200 UTC), but the HRRR runs hourly. The
frequency of updates allows an informal time-lagged ensem-
ble of the most recent HRRR runs, hereafter called HRRR-
TL. Newer HRRR-TLs between the synoptic times should be
expected to benefit from assimilating more recent observa-
tions than the older HREF. However, the HREF consistently
outperforms more formally constructed CAM ensembles
(Clark et al. 2020, 2021), and its diversity of model cores,
physics, and initial and boundary conditions can be expected
to capture a broader range of outcomes (Roberts et al. 2020).
It has not been well established how these two types of guid-
ance, each with a plausible advantage over the other, should
be weighed in combination by human forecasters.

To address this gap, hourly updating blends of the most
recent HRRR-TL and the most recent HREF output were
formulated by two different methods, as detailed in the next
section. Preliminary testing on supercell and MCS events
from 2019 and 2020 (using HREF and HRRR versions opera-
tional at those times) suggested these blends might offer small

improvements in skill by 1800–2100 UTC compared to either
HREF or HRRR-TL alone. As part of the Hazardous
Weather Testbed Spring Forecasting Experiment (SFE) in
2021 (Clark et al. 2021), Day 1 reflectivity and updraft helicity
(UH) fields were evaluated for HREF, HRRR-TL, and the
two blends. The SFE was chosen as the testing period to allow
direct comparison of objective and subjective skill over the
same events and domains.

This short study answers three questions:

1) How relatively skillful are the 1200 UTC HREF and the
1200, 1500, and 1800 UTC HRRR-TL for Day 1 convec-
tive forecasting?

2) Could a prescribed hourly-updating blend of the 1200
UTC HREF and more recent HRRR runs be more skill-
ful than HREF or HRRR-TL alone?

3) How well does objective verification of this guidance
agree with the subjective ratings of human forecasters?

2. Data and methods

a. HREF and HRRR-TL probabilistic fields

HREFv3 comprises the HRRRv4, the North American
Mesoscale Forecast System (NAM) nest, two configurations
of the Advanced Research version of the Weather Research
and Forecasting (WRF-ARW) Model (Skamarock et al.
2008), and the FV3 model. Roberts et al. (2019; Table 1)
details the membership of HREFv2, which remains consistent
in HREFv3 except that the FV3 replaces the WRF-NMMB.
[CAMs using the FV3 core were specifically evaluated in aCorresponding author: AndrewWade, andrew.wade@noaa.gov
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previous SFE (Gallo et al. 2021), in which they performed
well by object-based verification metrics but produced some-
what less skillful surrogate severe fields than HRRRv3.] A
time-lagged run of each model is also included: 6 h old for the
HRRR, and 12 h old for the others, for a total of 10 members.
All members are weighted equally in the HREF probabilities
calculated for this work. The HRRR-TL consists of the four
most recent HRRR runs, all weighted equally. HRRRv4
replaced HRRRv3 in National Weather Service operations
shortly before the 2021 SFE.

This study evaluates forecasts of composite radar reflectiv-
ity exceeding 40 dBZ and of UH in the 2–5 km AGL layer
exceeding 75 m2 s22, using neighborhood maximum ensemble
probabilities (NMEPs) of reflectivity and UH above these
thresholds, as described in Schwartz and Sobash (2017) and
Roberts et al. (2019). Square neighborhoods of 40 km are
used for both fields. As Roberts et al. (2019) emphasize, the
NMEP at a point is the ensemble probability of threshold
exceedance anywhere within the neighborhood centered on
that point, rather than a fractional coverage of the neighbor-
hood. After NMEPs are calculated, a Gaussian smoother
(s 5 13) is applied. Note that while probabilistic HREF fields
are available from NOAA, the NMEPs used here are calcu-
lated from the individual members to ensure the same meth-
odology is applied to both HREF and HRRR-TL NMEPs.

b. Blend formulation

Two blends of HREF and HRRR guidance were tested in
the SFE. The “time-based blend” considers the relative age of
the HREF and HRRR-TL being blended. Probabilistic fields
for both HREF and HRRR-TL are calculated independently.
Then a weighted average of those two fields is taken with
weights determined by lead time. The HREF weight is given
by the ratio of the lead time of the HRRR-TL to the lead
time of the HREF, and the weights add to one:

weightHREF 5
tforecast 2 tHRRR-TL
tforecast 2 tHREF

;

weightHRRR-TL 5 1 2 weightHREF: (1)

As the lead time of the HRRR-TL decreases toward zero
with each hourly run, its weight increases linearly from zero
to one. The 1800 UTC time-based blend is the version evalu-
ated in the SFE. This gives greater weight to HRRR-TL for
forecast times before 0000 UTC, greater weight to HREF for
forecast times after 0000 UTC, and equal weights for the 0000
UTC forecast, for which the 1800 UTCHRRR-TL has exactly
half the lead time of the 1200 UTC HREF.

The “error-based blend” considers short-term errors in the
individual members of both HREF and HRRR-TL, such that
the members with the smallest errors in observed fields at the
time the blend is created are given the largest weight. This
strategy followed from a preliminary finding, in the same test
dataset mentioned in section 1, that such short-term errors
were weakly negatively correlated with the skill of reflectivity
and UH forecasts later in the period. To create the error-
based blend, the 10 members of the most recent HREF and
the 4 members of the most recent HRRR-TL are combined
into a 14-member ensemble. Each member is compared to the
NOAA Real-Time Mesoscale Analysis (RTMA; De Pondeca
et al. 2011) valid at the blend’s initialization time over the
domain of interest. For example, for an 1800 UTC blend, the
1700 UTC HRRR-TL member’s 1-h forecast and the 1200 UTC
NSSL WRF’s 6-h forecast would both be compared to the
1800 UTC RTMA. Root-mean-square errors are calculated
over the domain for each member’s 2-m temperature, 2-m
dewpoint, and 10-m u and y wind components. These errors
are then normalized among the 14 members. Members are
scored by the total of their normalized errors in those four
fields. Weights are assigned such that the largest total error
score receives a weight of zero and the smallest a weight of
one, with all other members’ weights falling in between in
proportion to their total errors.

c. Verification

The Multi-Radar Multi-Sensor (MRMS; Smith et al. 2016)
merged reflectivity product is used as truth for reflectivity
verification. However, UH is not operationally measurable.
Because UH in CAMs is a proxy for supercell hazards, storm
reports of tornadoes (of any intensity) and hail exceeding
1 in. in diameter are used as truth. This approach has sev-
eral limitations. Perhaps the most serious is underreporting
of severe hail in sparsely populated areas, particularly in
West Texas during several SFE events. In the opposite
direction, nonsupercell tornadoes penalize UH guidance
that is only intended to represent supercells. However,
using reports is the simplest approach and is directly tied to
the intended use of UH in forecasting. Occurrences of com-
posite reflectivity $ 40 dBZ and of tornado and severe hail
reports are converted to binary neighborhood fields using
the same 40-km square neighborhoods as the NMEPs. These
verification fields are not smoothed.

A version of the fractions skill score (FSS; Roberts and
Lean 2008) is used for objective scoring of the probabilistic
forecast fields. Roberts and Lean (2008) define the FSS for
neighborhood length n as

FSS(n) 5 1 2
MSE(n)
MSE(n)ref

: (2)

Here MSE(n) is the mean square error, over an Nx 3 Ny grid,
of forecast fractional coverage (F) versus observed fractional
coverage (O) of neighborhoods of length n:

MSE(n) 5
1

NxNy

∑Nx

i�1

∑Ny

j�1
[O(n)i,j 2 F(n)i,j]2: (3)

TABLE 1. Pairwise comparisons of HREF FSS to other guidance.

Reflectivity guidance FSS . HREF FSS

1200 UTC HRRR-TL 5.8%
1500 UTC HRRR-TL 9.4%
1800 UTC HRRR-TL 21.7%
1800 UTC time-based blend 58.7%
1800 UTC error-based blend 55.1%
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MSE(n)ref in Eq. (2) is the MSE(n) of a “reference forecast”
with the least possible skill:

MSE(n)ref 5
1

NxNy

∑Nx

i�1

∑Ny

j�1
O2

(n)i,j 2
∑Nx

i�1

∑Ny

j�1
F2
(n)i,j

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦: (4)

FSS ranges from 0 to 1, where 1 represents a perfect fore-
cast. However, in the above definition, both forecast and
observed fields are binary. SPC uses a slightly different formu-
lation of FSS to accommodate probabilistic forecasts without
imposing a binary threshold. This FSS replaces the binary
forecast field’s fractional coverage over the neighborhood
F(n)i,j in Eqs. (3) and (4) with themaximum forecast NMEP at
any gridpoint in the neighborhood. The observed field from
which fractional coverage O(n)i,j is calculated remains binary,
but in this study is also a neighborhood field itself}i.e., equal
to 1 if the event occurred anywhere within the neighbo-
rhood}which may further differ from some uses of FSS. The
40-km square neighborhoods are used for these FSS calcula-
tions to match the NMEPs described above. Hereafter, “FSS”
refers to this probabilistic version, so reported FSS values
should not be compared directly to others calculated for
binary forecasts with the traditional formulation. To match
the time windows on which SFE participants were asked to
focus their ratings, FSS is calculated on each hour 2200–0300
UTC, for the instantaneous reflectivity at that hour and for
the maximum UH over the preceding 4 h. This results in six
FSSs, one on each hour in this window, in each of 23 events,
so that each ensemble or blend receives a total of 138 scores
for each field.

d. SFE events and participant ratings

The 2021 SFE ran from 3 May to 4 June, as detailed in Clark
et al. (2021). Over 130 forecasters, researchers, and developers

throughout the meteorological community used, discussed, and
evaluated a wide range of short-term tools for forecasting severe
thunderstorms, including as many as 94 unique CAMs. Regional
domains of interest were selected before each day’s forecasting
exercises and covered the U.S. Great Plains, Southeast, and
mid-Atlantic at various times. Since SFE domains were defined
for all convective days Monday–Friday, these are the days for
which objective verification is done in this study. Weekends are
omitted. Each morning, participants submitted surveys rating
the previous day’s CAM guidance on the chosen domain. Next-
day ratings for Friday events are not available because no SFE
activities were held on weekends, but since domains were still
defined, Fridays are included in FSS distributions, so that the
subjective scoring covers 20 of the 23 cases objectively scored.
The relevant section of the survey asked participants to rate
the 1200 UTC HREF, the 1200, 1500, and 1800 UTC
HRRR-TL, and the two 1800 UTC blends on a subjective
1–10 scale based solely on UH and reflectivity fields com-
pared to verification overlays. The evaluation tools that
participants used can be found at https://hwt.nssl.noaa.gov/
sfe_viewer/2021/model_comparisons and an example is
presented in section 3 below. In all, 154 complete surveys
were submitted for this group of CAM products, covering
20 events, so that there is a sample of at least several partic-
ipants’ ratings for each event. Participants were also given
space for open-ended comments, particularly about the
1800 UTC blends.

3. Results

a. Objective verification

For the forecasts of 40-dBZ reflectivity, distributions of
FSS (Fig. 1) indicate that the 1200 UTC HREF outperformed
all three HRRR-TLs. The much more diverse HREF

FIG. 1. Distributions of FSS for 40-dBZ reflectivity forecasts.
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outperformed the HRRR-TL at the same 1200 UTC initializa-
tion time, as expected, but it is somewhat surprising that this
remained the case as late as 1800 UTC. The two 1800 UTC
blends improved on the 1800 UTC HRRR-TL, but neither
was clearly preferable to the HREF. Despite such different
methodologies, the two blends’ score distributions were very
similar.

Beyond the distributions of scores over all events, it is also
relevant how consistently the ensembles performed head-to-
head in each event. Table 1 shows how frequently the other
reflectivity guidance scored higher or lower than the 1200
UTC HREF. These pairwise comparisons are even less favor-
able for the 1200 and 1500 UTC HRRR-TL than the score
distributions might suggest. This has clear implications for
forecasters in the midmorning–early afternoon (central time)
period when both the 1200 UTC HREF and more recent
hourly HRRR runs are available.

Distributions of FSS for the UH guidance over all cases
(not shown) had large variability and numerous scores of
zero, many of which arose from domains and time windows in
which no tornadoes or severe hail were reported or no UH
above the threshold was forecast. While these marginal cases
are important, the resulting scores made the distributions
somewhat harder to interpret, so the UH scores presented
here (Fig. 2) are for the 10 SFE events with the most tornado
and hail reports. (This shifts all the distributions upward but
does not change relative model performance from the full
results.) The overall pattern is similar to the reflectivity scor-
ing: the 1200 UTC HREF slightly outperformed the 1200 and
1500 UTC HRRR-TLs and was roughly matched by the 1800
UTC blends. The main difference from the reflectivity verifi-
cation is that the 1800 UTC HRRR-TL UH scores fell closer
to the 1200 UTC HREF scores.

b. Subjective evaluation and selected examples

SFE participants’ ratings of the six ensembles and blends
(Fig. 3) match the reflectivity FSS distributions (Fig. 1)
remarkably well}so well it should be noted that participants
did not have access to these products’ skill scores when rating
them. Table 2 is analogous to Table 1, showing how fre-
quently the other guidance was rated higher or lower than (or
equal to, since only whole numbers were allowed) the 1200
UTC HREF. As in the objective scoring, HREF outscored all
three HRRR-TLs most of the time, though the preference for
HREF over the 1200 and 1500 UTC HRRR-TL was not as
extreme as in the FSS comparisons. Participants’ slight prefer-
ence for the error-based blend over the time-based blend dif-
fers from the objective scoring results, but the difference is
mainly between ratings equal to HREF’s and less than
HREF’s; the blends outperformed HREF at similarly low
rates (34.4% and 35.0%).

Manual inspection of individual forecasts and SFE participant
surveys suggests two main reasons for these differences in per-
formance: the greater dispersion of HREF members and
HRRRv4’s possible bias related to convection initiation (CI).
Per SPC’s internal evaluation, HRRRv4 can be biased cool and
dry near the surface, sometimes resulting in delayed or missed
CI in scenarios requiring strong heating and mixing. SFE partici-
pants alluded to HRRR-TL’s underdispersion and, occasionally,
to delayed or underforecast CI in weakly forced diurnal settings:

• “The time-lagged HRRR options were all focused in on
one solution that was only partially right. The extra options
from the HREF increased the spread and better captured
all the reports.” (13 May; Fig. 4)

• “18Z HREF/HRRR-TL blends compared similar to the
12Z HREF but was slightly slow on initial CI.” (13 May)

FIG. 2. Distributions of FSS for UH forecasts in the 10 SFE events with the most tornado and hail reports.
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• “They [the blends] did a decent job overall. The HRRR
missed the Colorado border cell completely however.”
(13 May)

• “12Z HREF was a hard bar to beat. 18Z HRRR-TL just
didn’t capture the activity in KS at all. Very low probabi-
lities. Although maybe it was a low probability event.”
(26 May)

• “Blends slightly outperformed HRRR-TL by capturing
convection along the SE TX coast where HRRR didn’t
have reflectivity probs…” (11 May)

• “HRRR-TL missed some of the later development in
W TX/TX PH, but blending in HRRR probs slightly
reduced some false alarm areas compared to HREF.”
(27 May)

• “This is kind of splitting hairs in such a marginal event, but
I think the HRRR-TL ensembles all suffered from some
degree of over-forecast in southwestern GA later in the
day. HREF remained the best guidance.” (12 May)

While the above responses are reasonably representative
of the distributions of FSS and ratings, other comments also
illustrate the case-to-case variability. For example, most
respondents preferred at least one version of the HRRR-TL to
the HREF for the 17 May 2021 event centered in Texas:

• “All of the time lags performed better than the 12z HREF.
The blend simulation performed better than the 12z HREF
by having the area of severe coverage further west. However,
the 18z HRRR-TL was able to have higher confidence in the
correct spots for severe reports than the blends.” (17 May)

• “The blends were better than the HREF alone, particularly
for the supercell near Lubbock. The 18Z HRRR-TL was
better than the blends. Overall, 15Z HRRR-TL was best
because it nailed the Lubbock supercell, extended higher
probs toward Wichita Falls, and nailed the region west of
Amarillo.” (17 May)

Finally, while successive runs of the HRRR-TL did tend to
become more skillful and more highly rated as lead time
decreased, this was not true in all individual events. It
was somewhat common for forecasters to rate a 1500 or
1800 UTC HRRR-TL lower than an earlier initialization.
Some commented on this:

• “Interesting to see that the HRRR-TL does better for the
older runs, though we sometimes do see this in HRRR
runs.” (19 May)

• “15Z HRRR-TL has very good coverage of storms in
SE WY and NE CO, better than even the 18Z HRRR-
TL.” (20 May)

TABLE 2. Pairwise comparisons of HREF ratings to other guidance.

Guidance Rating , HREF Rating 5 HREF Rating . HREF

1200 UTC HRRR-TL 62.6% 19.6% 17.8%
1500 UTC HRRR-TL 63.2% 16.6% 20.2%
1800 UTC HRRR-TL 57.7% 18.4% 23.9%
1800 UTC time-based blend 35.6% 29.4% 35.0%
1800 UTC error-based blend 27.9% 37.7% 34.4%

FIG. 3. Distributions of SFE participants’ subjective ratings of overall forecasts. (The median has the same value as the
third quartile for the 1800 UTC error blend at far right.)

WADE AND J I RAK 703MAY 2022

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 12/02/23 10:18 AM UTC



• “18Z HRRR-TL was by far the poorest performer of the
set.” (24 May)

c. The role of diurnal CI in HRRRv4 performance

It is operationally important to clarify both skill scores
and participant comments involving the recent upgrade to
HRRRv4. Did the HRRR-TL generally fall short of HREFv3
because of its lack of model diversity, or because of a perva-
sive bias in handling certain CI scenarios? If HRRRv4 fore-
casts of diurnal CI were systematically poor, this should
appear as decreased skill in the afternoon and early evening
hours as probability of detection (POD) of deep convection is
temporarily reduced. This would have considerable implica-
tions for HRRRv4’s utility in short-term convective forecast-
ing. Daily time series of contingency table–based statistics
were calculated on all primary SFE domains (i.e., the same
set of 23 domains used in FSS calculations above) at each
hour for the instantaneous 40-dBZ reflectivity forecasts of all
HREF members initialized at 1200 UTC, including HRRR,
as well as the 1800 UTC HRRR. To emphasize presence or
absence of convection rather than its precise placement, a
large 120-km neighborhood was used. MRMS was again used
as truth. This method reveals no systematic drop in POD
(Fig. 5a) during peak diurnal CI hours that would be consis-
tent with late or underforecast CI, nor in the critical success
index (CSI; Schaefer 1990; Fig. 5c). These time series also
show that the HRRR’s best performance relative to other
models fell outside the 2200–0300 UTC evaluation window.
While the 1200 UTC guidance was tightly clustered in CSI
during the day, the 1200 UTC HRRR gained higher mean
CSI than the others by around 0600 UTC. The gap in CSI
between the 1800 UTC HRRR and the 1200 UTC non-

HRRR models also widened on average around 0300 UTC.
The benefit of assimilating newer observations is evident
in the 1800 UTC HRRR’s higher mean CSI than all
1200 UTC models over the entire 2200–0300 UTC evalua-
tion window. That the probabilistic 1800 UTC HRRR-TL
still did not consistently outperform the 1200 UTC HREF
despite this advantage, as shown in the previous sections,
reinforces the role of the HRRR-TL’s underdispersion in
that finding.

Finally, to eliminate the possibility that a HRRRv4 bias in
a few weakly forced, strongly heated CI regimes was simply
outweighed by more common scenarios, subdomains were
manually defined for SFE events qualitatively fitting that
description. Weather Prediction Center surface analyses
were used to identify regions in or near an SFE daily domain
where initiation of severe storms occurred between 1800 and
0000 UTC in the absence of an analyzed cold front or warm
front. This yielded a sample of 12 subdomains with primary
CI mechanisms that included drylines, lee troughs, stationary
fronts, remnant outflow boundaries, and orography. All
of these subdomains were located mostly or entirely within
the Great Plains and contained multiple reports of severe
weather. The resulting time series (Fig. 6) still are not consis-
tent with systematically late or underforecast diurnal CI in
HRRRv4. While the 1200 and 1800 UTC HRRR did have the
lowest mean POD (Fig. 6a) around 2200 UTC, the margin
was very small, and both HRRRs’ mean CSI (Fig. 6c)
remained tightly clustered with multiple other models’ CSI
from 1900 to 0000 UTC. A series of performance diagrams
(Roebber 2009) summarizes the progression of models’ skill
through the relevant 1800–0000 UTC period and illustrates
the variability in model performance across events (Fig. 7).

FIG. 4. Model evaluation viewer used by SFE participants displaying the 13 May 2021 event. Contours are NMEPs of UH, labeled in per-
centages, and green circles are severe hail reports, both over the 4-h period ending 0000 UTC 14 May.
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Low skill on the diurnal CI subdomains at 1800 UTC
(Fig. 7b) owes to minimal deep convection ongoing at that
time. As newly initiated convection became more prevalent
at 2100 UTC (Fig. 7d), HRRRv4 POD and FAR were not
practically different from those of the WRF-ARW and FV3
members. All models attained high skill with similar POD

and FAR around 0000 UTC, over both the full SFE dataset
and the 12 CI subdomains (Figs. 7e,f).

Overall, this analysis targeted to the HRRRv4’s hypothe-
sized weakness still places it well within the range of other
HREF members’ performance. This does not definitively rule
out any bias at all in forecasting the most subtly forced in-
dividual storms. There are well-established small biases in

FIG. 5. Hourly time series of mean (a) POD, (b) false alarm ratio
(FAR), and (c) CSI for all 1200 UTC CAM initializations and the
1800 UTCHRRR, over all SFE events.

FIG. 6. As in Fig. 5, but over the 12 CI subdomains detailed in
section 3c.
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FIG. 7. Performance diagrams for neighborhood 40-dBZ reflectivity forecasts from the 1200 UTC CAM initializa-
tions and the 1800 UTC HRRR. Points represent model means over the indicated set of events and domains; error
bars extend to the first and third quartiles in both dimensions.
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HRRRv4’s surface fields (Alexander et al. 2020) that likely
do influence CI in some way. But this subset of cases rules out
any CI bias large enough to affect relative skill, leaving
HREF’s model diversity as its apparent advantage over the
HRRR-TL in both objective and subjective verification. It also
implies that HRRRv4 can be used operationally in these settings
with just as much confidence as any other single CAM.

4. Conclusions

Regarding the questions in section 1:

1) The 1200 UTC HREFv3’s Day 1 forecasts of 40-dBZ com-
posite reflectivity and 75 m2 s22 2–5-km UH are more skill-
ful than the 1200 and 1500 UTC HRRR-TL; the 1800 UTC
HRRR-TL’s skill is similar to that of the 1200 UTC HREF
for UH, but lower than HREF for reflectivity.

2) Blended HREF and HRRR-TL output around 1800 UTC
does not consistently outperform the 1200 UTC HREF,
though it is more skillful than the 1800 UTC HRRR-TL
alone.

3) SFE participants’ subjective ratings of these forecasts
largely agree with FSS, especially that of the 40-dBZ
reflectivity field, and support the same conclusions.

The 1200 UTC HREFv3 proved very difficult to outper-
form in springtime convective events. This remained true
even with up to 6 h of additional information in the case of
the 1800 UTC HRRR-TL, and even when weighting all avail-
able guidance by how well it represented observed conditions
at 1800 UTC. HREF’s superior diversity (rather than a sug-
gested bias in HRRRv4 CI forecasts, which was not found)
seems to be the dominant reason. Practically, this cautions
against quickly discarding the morning’s HREF guidance in
favor of newer HRRR solutions. Forecasters might reason-
ably expect the 1800 UTC HRRR-TL to handle the evening
maximum in severe convective storms far more accurately
than the 1200 UTC HREF, which has twice the lead time, but
this is not generally the case for springtime thunderstorms
in the United States. The high skill of the HREFv3 is also
consistent with findings from previous SFEs in which multiple
experimental ensemble configurations fell short of HREFv2.

The primary limitation in generalizing these results is the
nature of the SFE sample (20 events subjectively rated and 23
events objectively scored). Although the daily domains cov-
ered most of the central and eastern United States at various
times in the SFE period, other seasonal regimes could not be
sampled, particularly cool-season severe weather in the
Southeast. It is uncertain whether relative model performance
would be the same in such events. Second, the 2200–0300
UTC evaluation period presented to SFE participants ended
before the overnight climatological peak of mesoscale convec-
tive systems in the central United States, for which relative
model performance could plausibly be somewhat different
than for other convective modes. However, the length of
hourly HRRR forecasts (18 h for all initializations except
0000, 0600, 1200, and 1800 UTC) makes this limitation
unavoidable for the HRRR-TL. Future work should clarify

CAM performance outside of the narrow season and diurnal
period sampled by the SFE.
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