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Natural hazards loss data collected by multiple agencies for diverse purposes have varying 

levels of detail, yet end users are often unaware of biases in these databases  

and accept the loss figures uncritically.

The insurance industry has a better understanding 
of economic losses suffered from natural hazards 
than the U.S. government despite the multitude 

of federal agencies that focus on natural hazards. 
In contrast to insurance companies—most notably 
reinsurers—the United States has no central reposi-
tory where comprehensive information on direct, in-
direct, insured, and/or uninsured losses caused by 
natural hazards is stored (Cutter et al. 2008). Federal 
agencies such as the U.S. Geological Survey (USGS), 
the National Weather Service (NWS), or the Federal 
Emergency Management Agency (FEMA) each 

collect a subset of information on a select group of 
hazards depending on the agency’s mission.

The monitoring and collection of loss data from 
natural hazards is a piecemeal approach lacking in 
standardized procedures, leadership, resources, and 
political commitment (Cutter et al. 2008; National 
Research Council 1999). Currently, only a few U.S. 
agencies gather loss information—aside from ad hoc 
assessments during catastrophic events. The NWS, 
for example, generates crude estimates of direct 
losses caused by weather events and publishes this 
information monthly through the National Climatic 
Data Center (NCDC) as the Storm Data publica-
tion and the Storm Data online database, whereas 
FEMA maintains records on insured flood losses and 
paid claims through the National Flood Insurance 
Program (NFIP; FEMA 2007). The lack of a full-cost 
accounting system of losses leaves the nation with no 
clear understanding of the costs of natural hazards 
to communities, the environment, or the economy 
(Brown Gaddis et al. 2007). We also have no baseline 
information for assessing whether mitigation strate-
gies and policies are effective in reducing losses. 
Despite long-standing and repeated calls for estab-
lishing such a systematic accounting of hazard losses 
for the nation (Cutter 2001; Mileti 1999; National 
Research Council 1999), none currently exists.

To make matters worse, existing loss data exhibit 
numerous biases, which end users are rarely aware 
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of when using and interpreting hazard loss informa-
tion. Many of these biases become apparent when 
comparing loss estimates for the same hazardous 
events across different databases. For instance, 
NCDC reports losses associated with Hurricane 
Katrina as high as $125 billion (NCDC 2008a), while 
the Spatial Hazard Events and Losses Database for 
the United States (SHELDUS) maintained by the 
Hazards and Vulnerability Research Institute (HVRI) 
at the University of South Carolina approximates the 
losses at around $80 billion. How can these estimates 
differ so dramatically for the same event? This paper 
highlights some common limitations associated 
with loss data by describing potential biases in the 
data, how these affect the loss statistics, and how 
they potentially lead to misinterpretations of the loss 
information.

FROm BIAS TO FALLACy. Biases in loss in-
formation often go undetected by end users and are 
generally a product of the type of information stored 
in a database and its construction. We delineate six 
major biases that alone or in combination skew the 
interpretation of loss information and eventually lead 
to a number of common misperceptions or fallacies 
about hazard events and loss information. These 
include the following:

1) Every hazard type is represented in loss estimates 
(hazard bias).

2) Losses are comparable over time (temporal 
bias).

3) All losses, regardless of size are counted (threshold 
bias).

4) All types of losses (monetary, human, direct, 
indirect, insured, and uninsured) are included 
(accounting bias).

5) Hazard losses are comparable across geographic 
units (geography bias).

6) Losses are the same regardless of the database 
used (systemic bias).

These six misconceptions are illustrated using 
data presently available in four widely used non-
proprietary, Web-based databases: the Emergency 
Events Database (EM-DAT), the Natural Hazards 
Assessment Network (NATHAN), SHELDUS, and 
the Storm Events database. Although each database 
records hazards-related losses, they are not identi-
cal in terms of spatial and temporal coverage, unit 
of analysis, loss information, or other parameters 
(Table 1). Most of these differences originate in the 
initial purpose and intended target audience that 

each database was designed to meet. For example, 
EM-DAT (CRED 2008) and NATHAN (Munich Re 
2008a) address a global community and contain in-
formation on major international disasters. The unit 
of analysis in both databases is the country level. On 
the other hand, SHELDUS (HVRI 2008) and Storm 
Events (NCDC 2008b) only include hazard events 
that affected the United States, generally recorded at 
the county level.

This paper highlights generic biases that apply to 
hazard databases and illustrates them using examples 
drawn from the four publicly accessible databases. 
Contrasting the selected databases serves only illus-
trative purposes and says nothing about the quality, 
comprehensiveness, or accuracy of each database. 
Furthermore, we note that NATHAN is in fact a 
subset of Munich Re’s proprietary natural hazard 
loss database MR NatCatSERVICE and represents 
less than 10% of the more than 25,000 events held 
in MR NatCatSERVICE (Munich Re 2008b). It is not 
the goal of the authors to evaluate the underlying 
NatCatSERVICE database given its exclusive propri-
etary nature. We included NATHAN in our study 
because, Munich Re considers NATHAN “helpful 
in making holistic evaluations of specific locations” 
(Munich Re 2008c).

We use cumulative losses of historic events that 
affected the United States from 1960 through 2005 
as our point of comparison. The monetary losses are 
adjusted to 2005 dollars using the average Consumer 
Price Index as released by the U.S. Bureau of Labor 
Statistics (www.bls.gov/cpi/home.htm). With the ex-
ception of SHELDUS, no database offered the ability 
to download inflation-adjusted losses.

Hazard bias. Hazard bias refers to the over- or un-
derrepresentation of certain hazard types within a 
database. It is introduced by selective reporting of a 
particular hazard type (e.g., floods, weather hazards, 
or geophysical hazards). Hazard bias is linked to an 
agency’s as well as a database’s purpose and audience 
and results in over- or underreporting particular 
types of hazard events. A prominent example is 
the apparent overrepresentation of f lood events in 
SHELDUS and Storm Events due to data collection 
procedures implemented by the NWS. Based on re-
quests from the U.S. Army Corps of Engineers, the 
NWS is obliged to provide monetary loss estimates 
for any flood event even if the damage assessment 
is a “guesstimate” (NWS 2007, p. 12). For all other 
hazard types, NWS officials either use “actual dollar 
amounts, if a reasonably accurate estimate from an 
insurance company or other qualified individual is 
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Table 1. Comparative overview of four widely used, internet-based hazard loss databases (CRED 2008; 
HVRI 2008; munich Re 2003, 2008a; NCDC 2008).

Em-DAT NATHAN SHELDUS Storm Events

Spatial coverage Global Global
United States w/o Guam, 

Puerto Rico, and other U.S. 
territories

United States including 
U.S. territories

Spatial resolution Country Country U.S. county
U.S. County, U.S. 

regions, U.S. forecast 
zones

Audience Humanitarian aid community Insurance industry
Emergency management 

and hazard mitigation 
community

Climatology 
community

Type of losses

Injuries, fatalities, affected, 
homeless, insured damages, 
reconstruction costs, total 

damages

Economic losses, fatalities
Direct property and crop 
losses, injuries, fatalities

Direct property and 
crop losses, injuries, 

fatalities

Temporal 1900–present 1811–present 1960–present* 1950–present**

Coverage lag time 90 days n/a ~180–600 days 90–120 days

Update interval Quarterly Continuously Annually Monthly

number of U.S. records 
(1960–2005)

623 164 >400,000 ≥1,000,000 (est.)

Number of total records ≥16,000 >2,600 >400,000 ≥1,000,000 (est.)

Recording thresholds

≥10 fatalities, ≥100 affected, 
declaration of state of 
emergency, or call for 

international assistance

Major natural catastrophes
1960–1995: ≥$50,000 crop 
or property losses, since 
1996: ≥$1 or fatalities ≥1

No thresholds

Accessibility Download (.xls) View Download (.txt) View

Data sources

U.N. agencies, national 
governments, Red Cross, 
World Bank, reinsurers, 

Associated Foreign Press, etc.

MR NatCatSERVICE, national 
insurance associations, 
insured, press and news 

agencies, national weather 
services, etc.

NCDC Storm Data USGS
NWS, NCDC Storm 
Data, NOAA’s Storm 

Prediction Center

Natural hazards

 Landslides + + +

 Winter weather + + + +

 Heat + + + +

 Drought + + + +

 Severe weather + + + +

 Wind + +

 Floods + + + +

 Tornadoes + + + +

 Hurricanes + + + +

 Fires + + + +

 Earthquake + + +

 Volcano + + +

 Tsunami + + + +

 Technological hazards +

 Biological hazards +

Ownership
Center for Research on the 
Epidemiology of Disaster, 

Catholic University of Louvain
Munich Re Group

Hazards and Vulnerability 
Research Institute, 
University of South 

Carolina

NCDC (NOAA)

URL www.emdat.be mrnathan.munichre.com www.sheldus.org
www4.ncdc.noaa.
gov/cgi-win/wwcgi.

dll?wwEvent~Storms

* SHELDUS version 6.1 covers currently the time period from 1960 through May 2007.

** Only tornadoes records date back to 1950. Thunderstorm wind and hail events data back to 1955. The records of all other meteorological events start in 
1993. The NCDC online database relies on the NWS hard copy publication Storm Data, which contains records all meteorological events dating back to 1950.

+ Hazards included in each database
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available” (NWS 2007, p. 12), or do not provide an 
estimate at all. The mandate to include loss informa-
tion on every flood event and not provide loss esti-
mates for other hazard types leads to an imbalance 
in recorded losses between hazard types.

Another example is drought hazards, which are 
notoriously underreported (Peterson et al. 2008; 
Svoboda et al. 2002). The general lack of physical 
damage combined with a lengthy duration and its 
mostly agricultural impact make it extremely difficult 
for NWS officials to prepare spatially and monetarily 

correct loss estimates. According to SHELDUS, 
NATHAN, and EM-DAT, droughts account for less 
than 7% of total losses from natural hazards since 
1960 (Fig. 1). This underscores the underreporting of 
drought losses or reveals the seemingly “marginal” 
impact of drought hazards.

A more subtle form of introducing hazard bias 
arises from issues of the definition of the hazard and 
assigning loss estimates (by the original data source) to 
predefined hazard categories within a database. This is 
most apparent in the management of complex events 

Fig. 1. Discrepancies in loss estimates (in 2005 billions) by major natural hazard type for different hazard 
databases (in 2005 billions) for the time period 1960–2005. The coastal category includes storm surge and 
coastal erosion. Geophysical events include earthquakes, volcanic eruptions, and tsunamis. The severe weather 
category includes wind, rain, hail, and lightning events. The loss distribution for Storm Events is hypothetical 
and was based on SHELDUS, which uses the same underlying data source for meteorological events (NCDC 
Storm Data publication) as Storm Events.
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involving multiple hazards versus 
a singular hazard event. A tornado 
spawned by a hurricane is counted 
as a unique tornado event, but it 
could also be lumped together 
within the entire hurricane event, 
or both. Each loss database classi-
fies events differently, especially 
when they involve multiple haz-
ard types (Guha-Sapir and Below 
2002). Inconsistent naming con-
ventions and classification meth-
odologies aggravate this problem 
and can result in different (and/
or artificial) hazard categories for 
similar, if not identical events. For 
example, Downton et al. (2005) re-
veal a $520 million “flood” loss in 
FEMA’s database that was not in 
the NWS data. The discrepancy is 
a result of differences in how each 
agency defines what constitutes a 
flood event. In this case, the event 
(storm surge) was outside NWS’s 
definition of a flood.

Definitional inconsistencies 
between databases and between 
the original loss data source and the database are 
also a problem. A good example is hurricane-induced 
storm surge. In SHELDUS, storm surge falls into the 
“coastal” hazards category while Storm Events assigns 
it to a category called “Ocean & Lake Surf.” Users inter-
ested in losses associated with, for instance, Hurricane 
Katrina, would only receive a partial loss estimate by 
querying the two databases for hurricanes and tropical 
storms, since storm surge was not included under that 
category. Finally, disaggregating complex events into 
their constituent parts could result in double or triple 
counting some events (e.g., hurricane wind, storm 
surge, and a tornado that came from the hurricane 
counted as three separate events).

Temporal bias. Natural hazard losses exhibit an 
upward trend over time (Fig. 2). This is a function 
of increases in wealth and population (Cutter and 
Emrich 2005; Pielke et al. 2008) but is also attributed 
to better loss accounting in recent years. The esca-
lating pattern of hazard losses is therefore partially 
an artifact of advances in reporting losses, but how 
much or how little this effect contributes to the sky-
rocketing losses in comparison to effects of popula-
tion growth and increasing wealth in high hazard 
areas is unclear.

As Guha-Sapir and Below (2002) note, disaster 
databases have generally converged over time with 
respect to data quality. This recognition implies that 
the further back in time users attempt to obtain data, 
the less consistency (and hence, reliability) they can 
expect to find between databases. For example, flood 
data were collected with a high degree of regularity 
since the 1930s, but data collection was completely 
halted from 1980 to 1982 due to a reduction in federal 
funding. Attempts were made later on to estimate the 
losses over these years, but these guesses are fraught 
with uncertainty and contain widely varying esti-
mates of flood damages (Downton and Pielke 2005; 
Downton et al. 2005).

Advancements in hazard monitoring, detec-
tion (e.g., Doppler radar), and loss reporting have 
advanced the level of precision and thus reliability 
of loss estimates over time. As Downton and Pielke 
(2005, p. 18) state, “Until recently, even in serious 
disaster, actual (however actual is defined) total dam-
age costs were not systematically compiled by any 
government agency… there was no way of checking 
the accuracy, or even the reasonableness, of most 
damage estimates.” To overcome this problem, FEMA 
established guidelines to conduct more systematic 
damage assessments (FEMA 1998). Similarly, the 

Fig. 2. Differing loss estimates for the United States (in 2005 billions) 
due to temporal, geographic, accounting and threshold biases. The 
timeline(s) for Storm Events are estimated and were derived from 
SHELDUS given the databases’ common data source for meteorological 
events (NCDC Storm Data). The estimated timelines for Storm Events 
prior to 1995 reflect the midpoint (mid) and maximum (max) value of 
Storm Events’ logarithmic loss categories.
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NWS developed Storm Data preparations guidelines 
(NWS 2007) to streamline and systematize the loss 
estimation process.

Finally, loss reporting procedures are not static 
and change over time. A significant change in data 
collection procedures occurred during 1995, when 
the NWS transitioned from a logarithmic loss esti-
mation approach to reporting actual dollar amounts. 
Subsequently, estimates of property and crop losses 
in NCDC’s Storm Data publication switched from 
categorical estimates ($5,000–$50,000, $50,000–
$500,000) to whole dollar figures. This change had 
significant implications for any loss database, such 
as SHELDUS that uses Storm Data as their data 
source.

Threshold bias. A major methodological problem is the 
inconsistent threshold criteria found across different 
loss databases (Table 1). Discrepancies between inclu-
sion criteria contribute to wide disparities in disaster 
information, including the total number of events 
included. Clearly, the filtering process for inclusion 
plays a major role in the relative size of disaster loss 
databases, as seen in Table 1.

Whenever thresholds come into play, events of cat-
astrophic magnitude with high human and monetary 
losses are better documented in loss databases than 
low impact events such as small-stream f looding, 
lightning, or hail. Thus, the loss reporting is more 
comprehensive for big events although loss estimates 
might differ among reporting sources. On the other 
hand, losses triggered by singular small events remain 
underreported due to lack of observation especially in 
sparsely populated areas, and purposefully excluded 
from some loss databases because of the threshold 
criteria.

The international EM-DAT database, for instance, 
applies a threshold of at least 10 fatalities, 100 affected 
people, a call for international humanitarian help, or 
a declaration of a state of emergency as a minimum 
criterion before adding an event to the database 
(Table 1). Many chronic events that cause monetary 
losses without exceeding local response capacities 
are not recorded in EM-DAT. Thus, this particular 
database has an inherent bias toward economically 
catastrophic and deadly events.

The exclusion of small-scale events by global 
databases like EM-DAT and NATHAN is less sur-
prising considering the feasibility, management, and 
resources needed to compile and maintain such a 
large volume of data. In many respects, national com-
pendiums, such as SHELDUS or Storm Events, should 
have an easier task of compiling natural hazard loss 

data. However, similar to EM-DAT, SHELDUS did 
not include events below a certain threshold for losses 
generated between 1960 and 1995 (at least $50,000 
in either property or crop damages). This caused 
SHELDUS to miss many small events that are associ-
ated with human rather than monetary losses (e.g., 
deadly lightning strikes). In an attempt to improve 
the recording of small/chronic loss events, SHELDUS 
eliminated its monetary thresholds (after 1995) and 
with the release of version 6.2 added deadly events 
(below the $50,000 threshold) from 1960 to 1995. 
Thus, SHELDUS operates on two, time-dependent 
thresholds. From 1960 through 1995, SHELDUS 
includes any event equal to or larger than $50,000 in 
monetary losses and any event that recorded at least 
one fatality. From 1996, the database contains every 
loss-causing event as well as every fatality and injury, 
irrespective of the level of monetary losses.

This selective reporting process explains why 
SHELDUS, despite its very conservative reporting 
procedures and tendency to underreport historic 
losses prior to 1996, shows higher annual losses than 
EM-DAT and NATHAN during years where few or 
no major disaster occurred (Fig. 2). In those years 
(1962, 1975, 1980, 1990, and 2001) when SHELDUS 
estimates surpass those provided by EM-DAT and 
NATHAN, the annual losses from natural hazards 
in the United States are characterized by multiple, 
recurring, cumulative losses from smaller events, 
rather than one large major or catastrophic one. The 
accumulation of chronic losses finds little recognition 
in hazard mitigation, emergency management, and 
decision making, although it is often a precursor of 
community resilience and its ability to absorb and re-
cover from larger events (Bruneau et al. 2003; National 
Research Council 2006; Tierney et al. 2001).

Accounting bias. Seemingly trivial questions to scien-
tists but important ones to the media and the public 
such as what is the costliest hazard or the costliest 
year, generate different answers depending on the 
database used. Aside from differences in number of 
observations, the type of loss information collected is 
a major factor causing highly variable loss statistics. 
Direct losses ref lect damages sustained by public 
infrastructure, buildings, machinery, or crops. In the 
case of complete destruction, direct losses are often 
equivalent to the replacement costs of the structure. 
Indirect loss is a loosely applied concept that captures 
anything from economic losses associated with lost 
revenue, business closures, lost income to societal 
losses (e.g., lost cultural assets and memorabilia, 
stress, depression, trauma), or environmental dam-
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ages (e.g., loss of species and habitat, ecosystem 
services) (Mileti 1999). Depending on the database 
in question, losses are generally reported as direct 
monetary (observable damage to infrastructure) 
and indirect losses (e.g., decline in revenue, business 
interruption). To further complicate the accounting, 
economic losses can be counted at the community, 
state, regional, or global levels, depending on the 
nature and impact of the hazard event. They are also 
characterized as insured or uninsured.

To test differences in accounting, we looked at 
the costliest hazard category in the United States. 
While SHELDUS, EM-DAT, and NATHAN agree 
it is hurricanes and tropical storms, the subsequent 
hazard ranks are less consistent (Fig. 1). According 
to NATHAN earthquakes are the second most 
costly U.S. hazard, with an accumulation of about $85 
billion in insured losses between 1960 and 2005. On 
the other hand, SHELDUS identifies severe weather 
($90 billion) as the second costliest U.S. hazard type, 
whereas floods take second place in EM-DAT, with 
$150 billion in losses. Why are there differences in 
U.S. loss estimates among the databases?

First, NATHAN documents both direct and 
indirect economic losses, while SHELDUS only in-
cludes direct losses. In societies with a high degree 
of insurance penetration, losses associated with 
insured hazards can exceed the estimate of direct 
losses dramatically as seen in the loss totals of each 
database (NATHAN: $715 billion; SHELDUS: $467 
billion; EM-DAT: $594 billion) (Fig. 1). Figure 2 viv-
idly illustrates this where years of large discrepancies 
between SHELDUS and NATHAN are marked by 
major (insured) events—Loma Prieta earthquake 
(1989), Hurricane Andrew (1992), Northridge 
earthquake (1994), and Hurricane Katrina (2005). A 
similar pattern is observed between SHELDUS and 
EM-DAT. We speculate that EM-DAT’s higher loss 
estimates are inflated by the inclusion of indirect loss, 
whereas NATHAN’s higher estimates reflect more 
comprehensive reporting procedures by the insurance 
industry when compared to federal estimates of direct 
losses represented by SHELDUS.

Second, the insurability against the hazard impact 
biases the reporting. In the case of NATHAN, the loss 
distribution across hazard types depends largely on 
the insurability of a hazard. A typical homeowner’s 
insurance policy provides coverage for fire (or loss 
from lightning) and wind damage (hailstorms, 
tornadoes, hurricane winds), but not storm surge. 
The protection against losses from earthquakes and 
floods requires additional policies and some hazards 
such as landslides are not covered at all (Kunreuther 

1998). As a result, losses from hurricane winds are 
much higher in NATHAN ($345 billion) than in the 
other two databases.

Direct as well as insured losses capture only a 
fraction of the costs and impact of natural hazards. 
Indirect losses and uninsured losses, which if 
included would inf late monetary loss estimates 
dramatically (Heinz Center 1999). There are also 
nonmonetary losses. The utilization of accounts of 
nonmonetary losses, such as fatalities and injuries, 
however, is severely hampered by a lack of documen-
tation. Hazard-related fatalities are underreported 
due to incomplete information on death certificates 
(Mathers et al. 2005; Smith Sehdev and Hutchins 
2001; Thacker et al. 2008), and there is no systematic 
way to account for injuries. Thus, fatalities and inju-
ries along with indirect losses and uninsured losses 
have yet to be fully accounted for in the estimation 
of losses from natural hazards.

Geographic bias. Changes in political geography also 
affect how hazard loss data are reported over space 
and time. Boundary changes at the country or sub-
country level introduce spatial inconsistencies in the 
assignment of losses. Most databases report event 
losses according to the political geography at the time 
of the event. When undertaking a longitudinal study 
of hazard losses, it is crucial to account for boundary 
changes that might affect the spatial accuracy of loss 
data. Failure to do so results in excluding or double-
counting loss information.

Political boundary changes and their effects on 
hazard loss data create problems at multiple spatial 
scales. To obtain all disasters from 1900 to 2007 that 
occurred in, for instance, the physical space now 
occupied by Croatia, one has to include informa-
tion prior to June 1991 from Yugoslavia’s disaster 
profile. Because the former Yugoslavia was larger 
than Croatia in its geographic extent, issues of spatial 
(dis)aggregation emerge. Using the same example, a 
user would have to employ some type of spatial or 
statistical interpolation to estimate how much of the 
former Yugoslavia’s disaster profile could be attrib-
uted to the present-day Croatia if information from 
the entire 1900–2007 period of record is necessary 
for analysis.

The problems associated with changing geogra-
phies are also apparent at finer spatial scales. At a 
subnational scale, U.S. county boundary changes 
over time affect the SHELDUS database in much the 
same way national-level boundary changes impact 
EM-DAT or NATHAN. Rather than informing data 
users of this issue when downloading data from 
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applicable geographic units, SHELDUS’s smart query 
is sensitive to geographical changes and changes 
in naming conventions, and instantly attaches 
additional relevant loss records. A user querying the 
database for Miami-Dade County from 1960 through 
2005 receives loss estimates for Dade County from 
1960 to 1999 as well as loss estimates for Miami-Dade 
from 2000 onward.

Still, SHELDUS as well as Storm Events are not 
entirely free of a geographic bias. Here, the geographic 
bias is not a product of thresholds or changes in 
political boundaries, but a product of differences 
in reporting geography. This issue is most apparent 
during 1995 when the NWS changed its reporting 
strategy, moving from loss estimates by climate re-
gion to loss estimates in the specific counties where 
the event occurred. We speculate that states, which 
immediately switched to the new reporting proce-
dure, potentially appear with higher frequency and 
presumably higher loss tallies in both SHELDUS and 
Storm Events in 1995. By 1996, every state followed 
the new reporting guidelines and provided specific 
loss estimates by county, which should have elimi-
nated any geographic bias.

Systemic bias. Systemic bias between (and within) 
hazard loss reporting agencies underpin all the 
inherent problems with hazard loss data. These 
systemic biases arise from initial data collection and 
compilation, including how losses are computed and 
the source of the information. A good example of a 
systemic bias is the reporting in actual dollar losses 
versus inflation-adjusted losses or reporting in whole 
dollars versus loss categories. The NWS’s former 
method of reporting losses in logarithmic categories, 
for instance, makes it extremely difficult to compare 
Storm Events estimates to other databases, such as 
SHELDUS (which used the lower boundary of Storm 
Event’s logarithmic categories). Figure 2 illustrates 
hypothetical estimates loss for Storm Events when 
using the midpoint (mid) or upper boundaries (max) 
of logarithmic categories. The graphic shows that 
both Storm Events projections exceed the estimates 
of EM-DAT, NATHAN, and SHELDUS across the 
entire time period. In 1993, the maximum projec-
tion for the cumulative losses of the Midwest floods, 
southeastern drought, and “Storm of the Century” 
top more than $160 billion in direct losses. Even 
though these midpoint and maximum estimates for 
Storm Events seem excessive, they represent a way to 
operationalize logarithmic loss categories. In fact, the 
Extreme Weather Sourcebook by the National Center 
for Atmospheric Research (NCAR) uses geometric 

means (slightly lower than midpoint estimates) to 
translate the Storm Data logarithmic categories into 
tornado loss estimates (NCAR 2008). This produces 
tornado loss estimates that are almost double the 
estimate of SHELDUS ($47.3 billion in 2005 dollars 
for tornadoes from 1950 through 2006 for NCAR 
versus $27.1 billion in 2005 dollars for events from 
1950 through 2006 for SHELDUS). Which one is 
more accurate?

Another systemic bias stems from the treatment of 
multiple estimates for a unique event. Which estimate 
should be included into the database when there are 
different loss estimates for the same event? This is 
fairly straightforward in the case of Storm Events 
since it uses only one input source: loss estimates 
generated by NWS officials. EM-DAT, NATHAN, 
and SHELDUS on the other hand rely on secondary 
data from multiple sources. EM-DAT and NATHAN 
do not specify what steps are taken to resolve discrep-
ancies between varying estimates. While NATHAN 
reports only insured losses collected from affiliated 
insurers, media, and so forth (Table 1), the losses 
reported by EM-DAT are an indistinguishable mix 
of direct and indirect losses. Furthermore, EM-DAT 
does not specify the data source for its estimates, 
which makes loss verification extremely difficult 
in EM-DAT (Vranes and Pielke 2009). In contrast, 
SHELDUS has a clearly defined policy and always 
uses the lowest estimate available when there is 
conflicting information from multiple sources. This 
explains why SHELDUS reports much lower total 
losses for the United States from 1960 through 2005 
than both EM-DAT and NATHAN (Table 2).

ImPLICATIONS. Every disaster loss database is 
fraught with inconsistencies and suffers biases. One 
problem that binds all of them together is the lack of 
standard methods for collecting and reporting disas-
ter loss data by international, federal, state, and local 
agencies. At first glance, these issues may appear to 
be mere technicalities, but these biases can be ampli-
fied and converted into fallacies by careless use of loss 
data. When risk assessments and the allocation of re-
sources are based on such loss estimates, the outcome 
can be inadvertently f lawed by the propagation of 
systemic and other biases inherent in databases such 
as those found in EM-DAT, NATHAN, SHELDUS, 
and Storm Events.

A widely referenced product that relies on uncer-
tain loss estimates is the NCDC’s estimate of billion 
dollar U.S. weather disasters (NCDC 2008a). The 
billion dollar weather disaster data are one of NCDC’s 
most popular products and often referenced by the 
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media (Lott and Ross 2006). Rather than relying 
on internal NWS data (Storm Data), the authors of 
billion dollar weather disasters consult with state 
emergency management agencies, the Insurance 
Information Institute, U.S. government agencies, 
state and regional climate centers, and news media 
to gather loss estimates (Lott and Ross 2006). While 
laudable and a first step toward full-cost accounting, 
the merging of direct, indirect, insured, and insured 
losses into an indistinguishably mix of “total” losses 
eliminates the possibility of verifying losses. It also 
undermines the transparency of loss estimates, and 
is counterproductive to understanding the relation-
ship between the various types of losses or improving 
data collection procedures. Ultimately, billion dollar 
weather disasters is a quick fix for media and politi-
cians given that there are no better official estimates 
on the impact of natural hazards on society. The 
most recent example of the lack of reliable, official 
loss figures is the reliance of the U.S. Climate Change 
Science Program on loss figures from SHELDUS for 
billion dollar disasters instead of government agen-
cies (CCSP 2008).

CONCLUSIONS. Current global and national 
databases for monitoring losses from national hazards 
suffer from a number of limitations, which in turn 
lead to misinterpretation hazard loss data. These bi-
ases include 1) hazard bias, which produces an uneven 
representation and distribution of losses between haz-
ard types; 2) temporal bias, which makes it difficult 
to compare losses across time due to less reliable loss 
data in past decades; 3) threshold bias, which results 
in an underrepresentation of minor and chronic 
events; 4) accounting bias, which underreports indi-
rect, uninsured, and others losses; 5) geographic bias, 
which generates a spatially distorted picture of losses 
by over- or underrepresented certain locales; and 6) 

systemic bias, which makes it difficult to compare 
losses between databases due to different estimation 
and reporting techniques.

To overcome these problems and to provide high 
quality loss data to planners, decision makers, the 
public, and other end users, we recommend stan-
dardizing some key areas such as loss data collection, 
documentation, accessibility, and dissemination. 
Clear guidelines and standard procedures must be 
developed on how to estimate losses for all types of 
natural hazards coordinated and implemented across 
the various federal agencies in charge of collecting 
hazard event and loss data. Common naming conven-
tions for similar phenomena and assigning unique 
identifiers to an event would streamline interagency 
record keeping and reduce the likelihood that a 
user looking for data on a particular hazard misses 
a source because they searched for their hazard of 
choice under a different name.

The proprietary nature of some loss databases 
mostly held by insurance and reinsurance compa-
nies restricts analytical studies and our understand-
ing regarding the spatial and temporal distribution 
of insured losses. Some researchers have therefore 
called for peer-reviewed, open-source databases 
(Bouwer et al. 2007), while others have called upon 
agencies such as the National Oceanic and Atmo-
spheric Administration (NOAA) and USGS to play a 
more vital role (Cutter et al. 2008). However, without 
full integration of standard methods between loss 
data producers as well as loss databases, disaster data 
will continue to lack comparability, limiting users’ 
abilities to draw meaningful conclusions about the 
nature of disaster losses over time and across spatial 
scales.

So, what are the true direct losses of natural haz-
ards since 1960? And more importantly, what are the 
true societal (or hidden) costs of natural hazards in 

Table 2. Selected U.S. losses according to different databases.

Em-DAT NATHAN SHELDUS

1981–2000 1960–2005 1981–2000 1960–2005 1981–2000 1960–2005

USD* % % USD* % % USD* % %

Droughts 8.8 5 3 28.9 10 7 17.9 13 9

Floods 52.4 30 34 45.6 16 14 46.4 34 28

Hurricanes/tropical storms 85.5 48 53 140.1 49 63 32.1 24 42

Landslides 1.3 1 1 — — <1 2.4 2 2

Volcanoes — — <1 — — <1 0.3 <1 2

Earthquakes 29.6 17 8 74.3 26 14 36.8 27 17

Total 177.6 100 100 288.9 100 100 135.9 100 100

* 2005 billions.
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the United States since 1960? Based on the loss fig-
ures presented in this paper, it appears that—at least 
in the United States—insured losses (see NATHAN) 
exceed direct losses (see SHELDUS). Since not every 
person or home or business is insured, we would 
expect to find the opposite relationship with direct 
losses surpassing insured losses. However, loss 
tallies by SHELDUS and Storm Events are far below 
insured losses. This seems to suggest that either a) 
the assumption about the relationship between di-
rect and insured losses is incorrect, or b) direct loss 
estimates are incomplete and the nation has suffered 
much higher direct losses from natural hazards than 
currently documented.

Achieving resilient and sustainable communities 
(SDR 2005) requires systematic and comprehensive 
inventories at the national as well as international 
level. The time is now upon us to establish the much 
needed and long overdue National Inventory of 
Hazard Events and Losses, an open access compre-
hensive data clearinghouse for natural hazard loss 
information. The policy imperative is clear: how can 
we reduce losses from natural hazards when we do 
not know how such losses are counted and when and 
where they occur?
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